PDr.EW I
Johnny Helkell

Scilab for Real Dummies,

Introducing an Open-Source
Alternative to Matlab

v1.0 / Scilab 5.3.2 (5.3.3)

4 1
S
-
Y
"
.
\
,
S

"It is a mistake often made in this country to mgaghings by the amount of money
they cost." Albert Einstein

Johnny Heikell

About this presentation

+I compiled this presentation while familiarizing myself with Scilab for
basic engineering applications. The exercise taught that a reason to the
limited spread of Scilab is lack of good tutorials in English, which makes
learning Scilab a frustrating experience for programming newbies. It's a
pity because Scilab deserves better recognition. Hopefully this
presentation can be of use to at least some Scilab aspirants.

The text no doubt has shortcomings and errors. I hope to come up with
an improved version in a not too distant future (with Scilab 6). Please
post comments & suggestions at: htip://scilabdummies/wordpress.com/

Espoo in August 2011 I Copyleft: This material is released under the oAIy
I condition that you do not put restrictions or a:prl
W Fectell | tag on your redistributions—modified or not—aid
_ _ I add this requirement to child copies. I
www. heikell.fi Otherwise © J. Heikell 2011

LinkedIn | e e e e e e e e e e e e e - [

Tribute to old gods

The best Scilab tutorials are non-English. The following are the ones
that I have consulted most for this work:

e Timo Makela’s Scilab/Xcos tutorials (3 parts) in Finnish <http://sites.
google.com/site/tjmakela/home>. Heavy on mathematical formalism,
standard dull LaTeX typesetting, but the best one I know

e Jean-Marie Zogqg's Arbeiten mit Scilab und Scicos in German
<http://www.fh-htwchur.ch/uploads/media/Arbeiten_mit_Scilab_und_
Scicos_v1_01.pdf>. It's good and informal, and contains details that
Makela has omitted. Needs updating

e \Wolfgang Kubitzki's mixed tutorials in German that can be found at
<http://www.mst.fh-kl.de/~kubitzki/>. Quite good, a lot of details, few
practical examples (scripts in separate .zip files)

I am indebt to their work.

“To copy from one is plagiarism, to copy from masyesearch.” Unknown

Why I did it @

the way I did it
+

As a grad student at KU in 1990-91, I needed to quickly learn MathCAD
or Matlab. A fellow student showed me MathCAD basics in 15 minutes
with the use of a sine function. The lecture went something like this:

o “First you declare the variables that you need”
o "Then you define the function that you want to plot”
o "After that you write the plot commands”

With that teaching I got started and was able to use MathCAD for my
MS thesis.

Lessons learned: Show examples and skip the academic trivia.

I am deeply grateful to Jim for his lesson. We'll repeat it as soon as
Scilab is installed and opened.

+

Why PowerPoint?

Why do I release this tutorial as a PowerPoint* presentation when there
is enough material for a 400-page book? There are several reasons:

1.

2.
3.

These were originally personal notes, I recognized only later that
they may be of use to others

It is easy to edit PPT material slide by slide

You get a quick overview of the discussion at hand by shifting
between PPT’s Normal and Slide Sorter views

PPT has an advantage over PDF in allowing the reader to modify
the work the way (s)he likes

You can copy-paste the provided scripts into Scilab’s Editor
without having to rewrite them, only minor editing is needed

And finally, I have seen too many depressing LaTeX documents

*) .ppt documents do not require MS software. Libffeg@ works as well (at
least up to PPT 2003) but some editing may be nedoi@acle threw in the
towel on OpenOffice in April 2011, but it lives omthe Apache Incubator.

Why simulate?

+

British physicist and engineer Lord Kelvin
(William Thomson) is known to have said:

“When you can measure what you
are speaking about and express it in
numbers, you know something about
l'z.' n

His words can be paraphrased in computer-
age terms:

“When you can simulate what you are
speaking about and present it visually,
you know something about it.”

Lord Kelvin 1827-1904

Contents

Introduction 11. Flow control

A first peek at Scilab 12. Examples, Set 4

The Console & Editor 13. Doing math on Scilab
Examples, Set 1 14, Examples, Set 5
Matrices, functions & 15. Working with GUIs
operators 16. File handling
Examples, Set 2 17. Animation

Graphics & plotting 18. Miscellaneous
Examples, Set 3 19. Examples, Set 6
Converting Matlab files 0. Adieu

= ol g R

0. Subroutines

HOW TO HYPERLINK IN POWERPOINT: 1) Slide Show modeBy
clicking on the underlined text. Rlorman View mode Put cursor on the
underlined text> right-click = Click: Open Hyperlink (There is @éugin
PowerPoint, hyperlinking to certain slides is impblgs e.g. to Chapter 19.)

PDr.EW I
Johnny Helkell

+

1. Introduction

What is and why use Scilab?

4 1
S
-
Y
"
.
\
,
S

N\

Return to Contents

+

What Scilab is (1/2)

A software package for scientific and engineering computing,
quite similar to Matlab

Scilab is a tool for numeric computing, as are Excel, GNU
Octave, Matlab, etc. The alternative is symbolic computing, to
which belong Maple, MathCad, Mathematica, and others

Developed by Consortium Scilab (DIGITEO), behind which are
a number of French institutions and companies

Included in the Scilab package is Xcos, a graphic modeling
and simulation tool. However, it is not compatible with
Simulink. Xcos 1.0 came with Scilab 5.2, before there was
Scicos. The confusion is complete with a rival called Scicoslab

Scilab is free and can be downloaded at www.scilab.org

+

What Scilab is (2/2)

Scilab is matrix-oriented, just like Matlab
It allows matrix manipulations, 2D/3D plotting, animation, etc.

It is an open programming environment that allows users to
create their own functions and libraries

Its editor has a built-in, though elementary, debugger

Main components of Scilab are:
— An interpreter
— Libraries of functions (procedures, macros)

— Interfaces for Fortran, Tcl/Tk, C, C++, Java, Modelica, and
LabVIEW—but not for Python and/or Ruby

Which is “better,” Matlab or Scilab?

— Matlab outperforms Scilab in many respects, but Scilab is
catching up. The use of Matlab is motivated only in special
circumstances due to its high cost

Why use Scilab—personal
reasons

+

m Matlab 6.5 (R13) was not compatible with my new Windows Vista
laptop. MatWorks, Inc., recommended to buy a new version

m | refused to pay another license fee for Matlab and went looking for
open-source alternatives:

Sage felt bulky, immature, and focused on pure mathematics
Python is not optimized for scientific and engineering tasks

Python(x,y) messed up my PC when I installed it. Maybe I should I
have tried SciPy instead?

I grew tired of GNU Octave before I figured out how to download
and install it (I want a tool to use, not to fight against)

Scilab was the fifth alternative that I looked at. It gave no immediate
problems, so I stuck to it. Later I have come across bugs and
crashes/lockups—and become frustrated with its poor documentation

Would I still select Scilab? Yes, | am impressedSoylab and believe that the

competitors cause you gray hair as well—one wagnother.

Why people don’t use

Scilab
+

The following are some comments about Scilab and open-source
software in general that I have come across:

e "Scilab? Never heard of it”

e “"Octave is closer to Matlab”

e “As a company we have to use software that will be supported ten
years from now”

e "It doesn’t have the toolboxes that we need”

e "There is a cost involved in shifting to a new software tool, even if
the tool is gratis”

e "Training and documentation support is poor”

e “There are no interfaces for other software tools that we use”

e "It seems to be rather slow”

Conclusion: Scilab, like other open-source programs, lacks credibility
in the eyes of users—particularly professional users. The situation is
similar with various excellent Linux distros and the LibreOffice office
package. Users trust products that have to be paid for

Scilab advantages

+

Numeric computing is better suited for complex tasks than symbolic
computing

Not all mathematical problems have closed form solutions, numeric
computing will therefore always be needed

Scilab is similar to Matlab and keeps developing even closer. It is
quite easy to step from one to the other

Scilab requires less disk space than Matlab and GNU Octave
It includes a Matlab-to-Scilab translator (.m files to .sci files)

Data plotting is said to be simpler than with GNU Octave (but the
trend is toward more complex handle structures)

The Xcos toolbox installs automatically with Scilab, be it, that Xcos is
not compatible with Simulink

Scilab installs without immediate problems on Windows computers

Scilab is free—if your wasted time and frustrations are worth
nothing. The fight for a limited humber of expensive licenses
(Matlab, Mathematica, etc.) is not an issue in professional life

Scilab disadvantages @

m Numeric computing introduces rounding errors, contrary to symbolic
computing

m The learning effort required by numeric computing is higher than for

symbolic computing

m Scilab lacks a unified tutorial and/or user’s manual. You “try and cry”
and waste time searching for information on its use*

m In some cases Scilab executes much slower than Matlab and GNU
Octave (improvements are said to be under way)

Scilab’s tools for creating GUIs are poor compared with Matlab
The Help Browser is very formal and of little use to newbies

Scilab has bugs and tends to crash/lockup (it happens to Bill Gates
as well. Often)

m On-line support from Equalis costs $495 or more per annum (the
French prefer $ to €)

*) Scilab is not alone. The open-source community d@oor track record in
documentation because “paperwork” does not bringgeition.

Terminology: “function”

+

The C programming language brought confusion with its
unrestricted use of the term “function” and this is repeated in
Scilab. The term refers to (at least):

e Mathematical functions in general
e Scilab’s built-in functions
e User defined functions (UDF)

I would prefer the terms furnction, macro (or procedure), and
subroutine respectively (protests form dogmatic programmers are
overruled). Sometimes I talk about subroutine, but it is not always
possible. For instance, function is the term that must be used to
define a UDF in Scilab. And there is also the risk of adding to the
bewilderment by applying own terminology. The confusion
remains...

Intro to problems (1/3):
crashes & lockups

‘ "8 Windows Task Manager lux] | S|
Eile
etworking Zers
IS 1K

Processor loads of this
magnitude are normal during — (S
computer startup. However, this
is the situation after Scilab had
crashed and I had closed it.
“WScilex.exe” had another of its
lockups and required to be
closed with the Task Manager
(or by rebooting the computer).

I
a

The Scilab team’s standard
answer to problems like this is
to make sure that the
computer’s drivers are up-to-
date. It has not worked for my
Windows Vista PC.

Intro to problems (2/3):

+

new releases*

m With Scilab 5.2 came a problem that I did not experience with

version 5.1.1: Copy-pasting from Scilab’s Editor to PowerPoint
frequently caused the latter to crash. The bug has been fixed

With Scilab 5.3.0 I found that the paths File/Open file in... and
File/Save file in... on the Editor were unresponsive

Some scripts that I originally wrote using Scilab 5.1.1 did not work
with Scilab 5.3.0, and GUIs on 5.3.2 are a real pain down there

Typically larger updates come with bugs and are quickly followed by
minor “bug fix” updates (a.k.a. patches). Scilab 5.3.1 emerged within
three months of 5.3.0. This is universal in the software business

It is wise to keep an old Scilab version until you know that the new
release can be trusted (I was happy I had kept version 5.1.1 when
GUIs on 5.3.1 & 5.3.2 gave me problems)

*) Various Scilab versions are mentioned. | havek&d with Scilab 5.1.1 -
5.3.2. Scilab 5.3.3 came too late to be considered.

Intro to problems (3/3):

ATOMS and nerds
+

m ATOMS is Scilab’s system for
downloading and installing user-
developed toolboxes. It has given me
real gray hair

m I installed two toolboxes and Scilab plots
became a mess. Here you can see what
the later discussed rotation surface
looked like with toolboxes installed

m I found what caused it after reinstalling
Windows and the toolboxes. It took me
days to get all programs running

m The idea of user contributions is basically

sound, but there is a risk with nerds that
have more zeal than ability and tenacity @

to properly test their programs

Embedded information

+

m Scilab comes with some built-in information structures. The major
ones are:
— The Help Browser that can be accessed from various windows. Its utility
improved with Scilab 5.3.1 when demonstrations were included, but the

Help Browser is still a hard nut for newbies. It confuses by sometimes
referring to obsolete functions

— Demonstrations that can be accessed from the Console. Not really
tutorials and some of them act funny, some may cause Scilab to crash,
and others still ask for a C compiler

— Error messages displayed on the Console. Quite basic messages,
sometimes confusing, sometimes too brief

m What is really missing is an embedded tutorial (or even a user’s
manual of the Matlab style) that is updated with each Scilab release

Information on the Web

(1/2)

m The main portal is Wiki Scilab, <http://wiki.scilab.org/ Tutorials>,
were most of the accessible tutorials are listed

m Scilab’s forge <http://forge.scilab.org/> is a repository of “work in
progress,” many of which exist only in name. Its set of draft
documents is valuable

m Wiki Scilab’s HowTo page <http://wiki.scilab.org/howto> has some
articles of interest

m Free sites:

— Scilab File Exchange website <http://fileexchange.scilab.org/>. A new
discussion forum managed by the Scilab team and “dedicated to easily
exchange files, script, data, experiences, etc.”

— Google discussion grou‘p at <http://groups.google.com/group/
comp.soft-sys.math.scilab/topics>

— MathKB <http://www.mathkb.com/>. Contains, among other things, a
Scilab discussion forum. Mostly advanced questions

— spoken-tutorial <http://spoken-tutorial.org/Study_Plans_Scilab/>.
Screencasts under construction by IIT Bombay. Scilab basics

Information on the Web

(2/2)

— YouTube has some video clips on Scilab, but nothing really valuable

— Equalis <http://www.equalis.com>. By registering you gain free access
to the discussion forum

— <http://usingscilab.blogspot.com/> used to be a very good blog but is
now terminally ill. Worth checking the material that is still there

— Scilab India <http://scilab.in/> is basically a mirror of Scilab Wiki, with
added obsolete material and a less active discussion forum
m If you know German:

— German technical colleges produce helpful basic tutorials on Scilab
(better than their French counterparts). Search the Internet e.g. using

the terms "Scilab” + “Einflihrung” and limit the language option to
German

+

Conclusion: A lot of resources have gone into producing the existing
scattered documentation, but they have been uncoordinated and
have produced little relative the input effort. Lousy management!

Books

There is not a single good textbook in English on Scilab like you find in
abundance on Matlab. These are the books that I am familiar with:

e Beater, P.: Regelungstechnik und Simulationstechnik mit Scilab und
Modelica, Books on Demand GmbH, 2010. Basic control systems for
mechanical engineers. Scilab plays only a minor role in the book

e Das, V.V.: Programming in Scilab 4.1, New Age International, 2008.
Reference manual with uninviting layout, obsolete functions, and no
practical examples. Useless

e Chancelier, 1.-P. et al.: Introduction a Scilab, Deuxieme éEdition, Springer,
2007. An intermediate/advanced textbook with some engineering
applications. Approaching obsolescence

e Campbell, S.L. et al: Modeling and Simulation in Scilab/Scicos, Springer,
2006. Based on Scilab 3.1, over half of the book is on Scicos. Of some
use, but dull the way Springer and LaTeX make them

e Gomez, C. et al.: Engineering and Scientific Computing with Scilab,
Birkhauser, 1999. Often referred to but outdated and of no use

On updates & literature

‘ Scilab evolves rapidly and one frequently encounters obsolete
features. Functions are often declared obsolete, although Scilab still
may support them, and other functions are removed altogether.
There is obviously no collection of obsolete/removed functions and
their current equivalents (if any).

The Scilab team is slow with information on major updates. For
instance, the GUI interface is said to have been completely renewed
with version 5.x, but so far the only (poor) GUI description that I
have seen is for version 4.x. It's almost three years now...

Rapid development is a reason to why the limited literature on Scilab
IS mostly obsolete, sometimes outright misleading. I got a hands-on

experience with all the changes that had to be made to 5.1.1 scripts
before they agreed to run on version 5.3.x (and not all do)

Scilab learning obstacles

Learning Scilab can be frustrating to a person with limited previous
programming experience. The biggest hurdles are:

Lack of hands-on tutorials for English-speaking newbies. The
situation is better, though not good, with some other languages

Excessive number of Scilab functions. There are some two thousand
of them. There are often numerous options to select between; some
of which work, some don‘t, some of which you know, most you don‘t

Unhelpful Help Browser. Even when you have a hunch of which
function to use, you cannot get it right because of the Help Browser’s
cryptic explanation

Basic programming errors. Creating infinite loops, dividing by zero,
using * instead of .* , etc. We all make them, there is no way
around them than by practicing. “Ubung macht den Meister!”

+

On the bright side...

Scilab works! Despite my complaints it mainly does a fine job

It is a great thing that it is given away for free to all of us who
cannot afford expensive commercial simulation tools

It is a great thing that it is give away for free to all commercial and
non-commercial institutions that care about cost-effectiveness

It is a free gift (though with restrictions*) to science and engineering
and deserves support of us who happily download whatever comes
gratis on the Web

It deserves support because Scilab, like other open-source IT
solutions, faces an uphill struggle against vast commercial interests
and skeptical individuals

Long live the free and open-source/access community!

*) Scilab is released under the French CeCILL licefi$® question is, IS it
really a Free and Open-Source license that allawstgy release a Scilab cop)
under a new name, the way OpenOffice was turnedLibi@Office?

PDr.EW l
Johnny Helkell

2. A first peek at Scilab

What you face when trying to get
started—including "Scilab in 15 @
minutes”

N\

Return to Contents

Windows installation (1/3)

+

1. Download Scilab from 2. The right operating system
www.scilab.org should be on top. Save the file,
(Windows on the top, typically it goes to your own
other OSs below) Downloads folder

{8 Home - Scilab WebSite - Molilia Firefox

IEiIE Edit Miew History Boolmarks T

ﬂ - c it H http://www.scilab.org/

B Home - Scilab WebSite

i = = : h* X g ..-I-.
about us l news | products | support I communities | projects | education |

Download Scilab

- Windows 138 MB
- (&)

Other Systems

Windows installation (2/3)

4. Double-click on the

Inside the file to install Scilab,
Downloads file follow the prompts

3. Scan the downloaded
file for viruses

MName Date modified

E‘ scilab-5.3.2 15.5.2011 18:52 Apphication

Folders

D Desktop

£ Documents

1 itemn

Windows installation (3/3)

5' SCIlab SuggeStS that It SEI’-E:E{EE:;Z:::ESh-:nuld be installed?
should install all

toolboxes (modules). Go
for it unless you are
really short of memory

Select the components you want to install; dear the components you do not want to
ins continue,

6. Accept Scilab license
terms (you have no

OptIOn SO Why dO th ey &qmpl&zting the scilab-5.3.2 Setup |
ask?). Click Next as ,zarwj_ s
many tl mes as need ed IZIu.rrr:nt selection IEEIIJlr' _Ié S A

/. You're all set to use
Scilab (no need to
reboot the computer)

About modules ...

Note: Scilab does not
uninstall an old version

This discussion is valid for Ubuntu
10.04 LTS with the GNOME
desktop*

m Click: Applications/Ubuntu
Software Center/Science &
Engineering and scroll down to
Scilab; then just Click Install

m Only Scilab 5.3.0 beta-2 is
available at the repository

m For the latest version you must
go to Scilab's web site and
download Linux binaries. The
installation, however, is a
trickier question and I do not
cover it here (have not tried it)

*) Ubuntu 11.04 with Unity has been
released, but | have not gone for it

The Console

‘ Click on Scilab’s shortcut - — o e

icon to open the Console
(Command Window in
Matlab*):

Menu bar
Toolbar

Command prompt

loading initial environment

If no shortcut icon has been
created: Click: Start\All
Programs\scilab\scilab (do
not select Scilab Console)

*) The Console has other names as well: Worksdatagtup/Main Window, eta.

Folks:

Here it comes, the lesson on
MathCad that Jim gave me back in
1991, transformed to Scilab. A
lecture worth gold in three slides

Scilab in 15 minutes

+

(1/3): write a script

Recall how Jim taught me MathCAD in 15 minutes? Now we'll repeat
that lesson in Scilab. We do it by using the Editor (SciNotes):

ﬂ Ceilab Console | == "'“‘e’"".l

Step 1: On the COI’\SO|€, C“Ck ‘Eile Edit Preferences Control Applications ?
the leftmost icon on the TG TR
toolbar. The Editor pops up

Step 2: Define whatever
Va I‘Ia bleS YOUI’ fU nct|0n needS ! = foo.sce (HADREW\Writings\5alab examples\foo.sce) .. =2 x)
(rOW 1). Note Comment (//)) File Edit S5earch Preferences Window Execute 7

=7 === ab
Step 3: Next, define the (sine) e
function in case (row 2) .!-!:f“ﬂE'jl b * ...I':::l

Step 4: Finally, write the
plot command (row 3)

Scilab in 15 minutes

+(2/ 3): save and plot

Step 5: Save the script by
Clicking on the Save icon
and name it e.g. foo. sce

ST R B 5 T
- foo.sce (HADYEW\Writings\Scilab examples\fos.sce) ... L= ';—-_"'E‘-‘-!'.J

{‘Eife Edit Search Preferences Window Execute 7

| i e 7 Y S
P) - =l = =

Step 6: Finish by running [p———

(executing) the script by a =T 7] @ Graphic window number 0 e
Click the Execute icon (a R e

second one came with 5.3.2)

Step 7: Up pops the -
Graphics Window with thea __
plot of the defined equation

Did you have problems or get an
error message on the Console? Don't
worry, we'll return to everything
later. Jump to Examples 1-1 & 1-2 if
you are in a hurry.

Scilab in 15 minutes

+(3 /3): discussion

This exercise showed the essentials of Scilab in engineering
applications:

m Scilab’s user interface consists of three main windows:

— The Console, which pops up when Scilab is opened and on which
it outputs textual data (numeric answers, error messages, etc.)

— The Editor (SciNotes), which is the main tool for writing, saving,
and executing scripts (programs)

— The Graphics Window, on which Scilab presents plots
m The recipe for using Scilab is the one that Jim taught me:
— First you declare the variables that are needed
— Then you define the function that you want to plot
— And finally, plug in the plot instruction

' That was Scilab!
' Let’'s go pizza |

The Console’'s menu bar
(1/6): File

Among the functions under the
File drop-down menu that you
will quickly encounter are:

- w R i S =, -~
B “cilab Consale

Execute. . From hel‘e you can Preferences Control ﬂ-f:nplicatice-r.'usr: —
. g Execute... Ctrl+E mla | sGE (D
run Scilab scripts (or from the -
Editor, aS Seen Iater) Gpen a file,.. |:.tr|+f] .
Lead envircnment... Ctrel+
Open. . Sl m | Iar to the Open. . ARNE POR SRR Shp
comma nd |n MS Ofﬂce i Change current directery...

p rog Fams Display current directory

Pagesetup..

Print... Ctrl+P

Change current directory...,
Display current directory:
Pay attention to those two, they
will be needed to tell Scilab
where to look for a script that
you want to open

it Ctri+ Q)

The Console’'s menu bar
(2/6): Edit

The functions under the Edit drop-

down menu are self-explanatory.
B scilab Console

The Cut, Copy, and Paste , r———
commands have their own icons in i |2 2% @
the toolbar. You also find them by 5P Copy ctiieC |
right-clicking on the PC mouse Paste S

Empty clipboard

Be careful with Empty clipboard.
You may not be able to use Copy
after clicking it! (Happened to me)

Select all Crrl+A

I have used Select all a lot to
copy-paste the demos in this
presentation

The Console’'s menu bar
(3/6): Preferences

+

The functions under the
Preferences drop-down menu
are quite similar to what you
can find on a PC

I can only guess that Clear
History is similar to Clear
Private Data in Firefox, but
there is no Show History
alternative and Help is not
helpful

Clear Console empties the
console. You achieve the same
by pressing F2

H Scilab Conzale

P —

cntrol Applications 7

3 Censole Background...
Eont... Console Font...
Show/Hide Toclbar
Clear History

Clear Conscle

Change visual appearance
of the Console

The Console’'s menu bar
(4/6): Control

+

I did not need the Control

drop-down menu a single time
while doing this presentation,

so obviously it is not very
useful

My guess would be that the

Resume , Abort, and Interrupt

alternatives give the user a
way to interfere with the
execution of a program

T~

File Edit Preferenc

& 5 | & 'E L] Resume ¥

Abort

Interrupt

The Help Browser is not
very helpful and it does
not even recognize the
Interrupt command

The Console’s menu bar

+(5 [/6): Applications

SciNotes: Opens Scilab’s Text
Editor (same as Launch |

SC 1Not oq In the tool ba r) File _I-EI:IH.: .I-'rr.:;-_.‘_."ﬁ""EEE.. IZE_:::-ntr_l:'_
" | ZE|X D0 ETH

Xcos: Opens Xcos

Matlab to Scilab translator

Matlab to Scilab translator:
Used to translate a Matlab .m-
file to a Scilab .sci file

Yariable Browser

Module manager - ATOMS

Command History

Atoms: Opens the online
module manager

Variable Browser: Opens a list
with variables (same as the

Command History: Opens a list
browsevar; command)

with commands used

The Console’'s menu bar
(6/6): Help alternatlves

‘ '"I lCI‘IS_ |1:

III. FI|E Edlt Frefer'ences Control Applications E]

G B s B0 B AZ S8 SsdabHep
|t =

Scilab Demuonstrations

i | Web links Scilab Web Site
o Scilab Online Help
About Scilab...
Scilab Wiki
Scilab ATOMS Web Site
File Exchange
Mailing lists

Forge
SCllab Help: Same as the Bugs And Requests
question mark icon in the

toolbar Scilab Web
resources

Scilab Demonstrations: Shows

demos with few comments (same command as
the cogwheel in the toolbar). At least the
GUI/Uicontrols 2 demo causes Scilab to crash

*w Elernm

Demos

Introduction
Simulation
Graphics

CACSD

Ul

Dynamiclink
Cptimization and Simulation
Palynomials

Signal Processing
TcliTk

Sound file handling
Random
Spreadshest

- e
@ -

-} L
o e

The Console’s toolbar

‘ The Atoms, Xcos, and Demonstrations
icons came with Scilab 5.2

Launch Editor: Opens Scilab’s B cilab Console |
Editor (SciNotes, another part File Edit Preferences Control Applications 2
of its Integrated Development
Environment (IDE). Basic
tutorials seldom stress the fact
that normally we work with
(write, edit, save, run)
executable Scilab scripts on the
Editor, not on the Console. The
Editor is presented a few slides
below

sBla0 BB ANAS G

Change Current Directory: It
can also be found under File
in the menu bar. You need it to
point out from which directory
(folder) Scilab should search
for a script that you want to
execute (run)

The Help Browser (1 / 3)
+ In the Console, Click on

the Help Browser icon
to open it

al Equations, Integr:

Help discussions become
more readable if you print
them as PDF files

absolute value, magnitude

Calling Sequence

The Help Browser is a e AR

brief “encyclopedia” of

Scilab’s main features and

functions. Explanations of - Description

functions are augmented =

; the complex modulus (magnitude} of the

by examples (see next —
slide for a demo), but this it Examples
does not compensate for
a good tutorial

The Help Browser (2/3)
+ 2. The Graphics

Window with the plot F
pops up (in this cases it [|EY
briefly flashes the first
plot)

1. In the script box with
examples, Click on the
Execute icon to see how the
scripts executes (not all work)

Examples

3. Click on the Editor icon
and the script is transferred
to Scilab’s text Editor where
you can play with it (must be
saved before it can be run)

The Help Browser (3/3):
help function_nam

‘ H Scilab Console =aae X
To find the proper use File Edit Preferences Control Applications 2 |

of any function— #EBla00BAS S =20
assuming that the -
name is known—the
Help Browser can be
opened from the
Console by entering
the command help
function_name
command, in the
shown case help

determinant

det() (the brackets ﬁ ' : Calling Sequence
can be omitted). The | ot
alternative is to open e commator Arguments

the Browser with the

real or complex square matrix, polynomial or rational matrix.

Help icon [i

The Editor (SciNotes)
+ Save & execute

m The (Text) Editor is where
executable Scilab scripts are SEdlE
written, maintained & run

s Open the Editor by clicking
on the Launch SciNotes icon
in the Console, or by clicking: . o
Applications\SciNotes “Untitled 1 (30
m A Scilab script is a text file 4]
with a name of the type
*. sce (the alternative
*. sci is also used but
*. sce is the default)

m It is good practice to use
scripts also for small tasks.
Then all “projects” are saved
and commented, ready for
reuse T

== Untitlad 1 - SciMotes

File Edit' Search Preferences Window Execute 7

CERCOE ale e

But don't forget to create a
properly organized archive
for your programs!

Editor menu bar (1/5):
File

Recent Files
N W

Open

Working direch

Open file in ...

Save file in ...

Reload

Open function

Save
Save as

Save All

Print Preview

Print

Close

Close 4l

aries

source fle

Close All But This

Exit

Ctrl+ M
Ctrl+0

Strl+ Shiths B

Ctria&hift+ O

Ctrl+G

Ctrl+Shinw 5

Ctrl+ Shift+P
Ctrl+P

Ctrl+W

Ctrl+ Q)

= Untitled 1 - SciNotes

{ Eile Ddit Search Preferences Window Execute ?

File commands that you are most
likely to run into:

Recent files gives quick access to
recently edited scripts

New opens a second tab for a
new script to be edited

Open opens a saved script into
the Editor

Open file in... and Save file in...
do not work in Scilab 5.3

Print is an ordinary print
command

Close closes the file in case

Editor menu bar (2/5):
Edit

Undo Crl+Z = Untitled 1 - SciNotes
Redo Ctrl+Y

+

File | Edt Search Preferences Window Execute 7

Cut Ctrl+ X

Copy Ctrl+C

Paste Ctrl+V

Delete

Commands under Edit are
: : mostly self-explanatory. Note
elect Al crl=A however the following four:

Copy as HTML with line number Ctrl+Shift+ C

Shift Righ Icb Shift Right/Left:
shift Left hifteTab Indent/unindent a row by one
Comment Selection cursD step (this pair should be on the
Uncomment Selection Ctrl+Shift+D

toolbar)

Correct Indentation Ctrl+1

Remove trailing spaces Ctrl+5Shift+W

Comment/Uncomment Selection:
Add/delete a comment

Make Selection Uppercase Ctrl+Shift+)

Make Selection Lowercase Ctrl+)

Capitalize character Ctrl+ Shift+ A

Editor menu bar (3/5):
Preferences

-

= Untitled 1 - SciNotes
Line numbering

.EiE Edit Searth Preferences Window Execute 7

Current file encoding

Default SciMotes file enceding

Line Endings

The Preferences drop-down ~ Page Setup
menu allows you adjust Editor Hornizontal wrapping
SEttingS tO your I|k|ng ' Auto-completion on (",... Ctrl+H

' Auto-completion on if function,... Ctrl+5hift+H
I had difficulties reading scripts S
on the Editor (poor contrast Highlight current line
with default settings) and used
Set Colors... and Set Font to
change from default values

Set Colors ...
Set Font
Reset default font

Configure Tabulation

Restore opened files on start-up

Editor menu bar (4/5):
Preferences, comment

+

Users can send bug reports to Scilab’s development team (link at
<www.scilab.org>). I filed the following report (Bug 8802):

“Default color settings on the Editor produce poontrast ... Changing
font colors is tedious due to the excessive nurmabeptions under
Preferences\Set colors... (an overkill, you coalg) sl would suggest
default settings with just four colors (red, grelelue and black). ”

To which I got this answer:

“You can modify more easily the colors configuratio modifying the
file: C:\Documents and Settings\Johnny\Applicativata\Scilab\
scilab-5.3\scinotesConfiguration.xml (or a path ethis similar) ”

I found scinotesConfiguration.xml under C:\Program Files\
scilab—5. 3\modules\scinotes\etc\. XML color codes must be
changed in this file. I wish you good luck

Editor menu bar (5/5):
Execute

+

The Execute drop-down
window contains three options:

= Untitled 1 - SciNotes

File| Edit Search Preferences Windo@ Execute 3

... file with no echo Ctrl+5hift+E
... file with no echo: A ... file with echo Cirl+L
simple execute command ... until the caret, with echo Ctrl+E
(same as clicking the Execute
icon on the toolbar)

... file with echo: Executes
the script and echoes it (shows
it) on the Console

The Execute commands used
to be simpler. I have no idea
why they changed them this
...until the caret, with way. My recommendation is

echo: Beats me, what it means to use the Execute icon on
the toolbar (see next slide)

%

Editor toolbar

New... Opens a second " Untitled 1 - SciNotes - | (0 |
tab fOI‘ a new SCI‘ipt tO Eile Edit Search Preferences Window Execute 7

be edited (the same
command can be found
under File)

CEREm 6 %R AC0[@E >

*Untitled 1 /3]

The Save icon looks like the
Dutch tricolor, but you'll get
used to it. The next one is
Save as...

The Execute (or
Save & execute)
icon is what you
normally use to run
a script

The Undo/Redo arrows
are quite normal

The Paste icon is a
bit unusual (French?)

Ready to go

+ Console (command window)

Your desktop Editor (SciNotes)
should now look [
something like
the one here. As
we have seen,
both the Editor o |
and the Conso|e Fo

are needed since [
when the "
scripts—created
on the Editor—
are executed
numeric outputs -
is returned to the |
Console |

One more thing (1/2):
docking windows

m Itis possible to dock Scilab windows; i.e., to form a unified
workspace similar to the one in Matlab. Here is how to do it:

Bali | Pressthe left
mouse button

on the
darkened bar of
an active
window, drag
over another
window and
release. The
next page
shows one case

+

One more thing (2/2):
docking windows

Each
window
part has an
arrow in
the upper
right-hand
corner, by
which you
can release
it from
docking

On scripts and functions

+

m Scilab has two command types:

— Scripts. A set of commands used to automate computing. Script
commands are normally returned to the Console, but plots are
returned to the Graphics Window

— Functions (macros). Short programs that interface with the
environment through input and output variables. A list of
common built-in functions is given on the next slide. Functions
defined by the user can either be local (integrated in a script) or
global (stored as a separate file and accessible to any script)

— I may use the term “code” to make general references to either
scripts or functions

m As was already said—and will repeated—one should rather
create scripts and functions on the (Text) Editor (SciNotes)

Built-in functions

‘ Below is a list of common math functions in Scilab. A full list of built-in
functions can be found under Help\Elementary Functions, which also
explains requirements on arguments (there are both mandatory and

optional arguments).

sin(), cos(), tan(), cotg()

Trigonometric functions, e.g. sin(.2*%pi)

asin(), acos(), atan()

Arc functions

sinh(), cosh(), tanh(), coth()

Hyperbolic functions

asinh(), acosh(), atanh()

Inverse hyperbolic functions

sqrtQ), exp()

Square root, e.g. sgrt(2) / exponent

sum()

Sum

min(), max()

Minimum / maximum value

abs(), sign()

Absolute value, e.g. abs(sinc(x)) / sign

CEUGMINERG)

Real & imaginary parts of a complex f

Predefined variables &
constants

+

Main predefined and write-protected variables/constants are:

%i i=+v-1 (G EA

%pi n=3.1415927... |Pi

%e e =2.7182818.. Napiel's constant e

Yeps e=2.22-1016 Precision (machine dependent)
%nf Infinite (not mathematically infinite)
Yhan Not a Number

%s S Polynomial variable

%z Z Polynomial variable

%t, %T | true Boolean variable

%f, %oF | false Boolean variable

Scilab operators (1/2)

The list contains the majority of operators used in Scilab. Many will be
explained in detail later.

End of expression, row separator

Instruction, argument or column separator
Conjugate (matrix) transpose, string delimiter*
Non-conjugate transpose

1. 0 Vector or matrix definition concatenation, transpmsnatrix
() The pair of left/ right parenthesis is used fori@as purpose$
+, - Addition, subtraction
0k Multiplication, element-by-element multiplication

*) Both simple () and double (") quotes are allowed to define attarastrings

+

Scilab operators (2/2)

Right division, element-by-element right division

Left division, element-by element left division

Power (exponent), elemeby-element power

Kroneckemroduct

Kroneckermright and left division

Logical OR

Logical AND

Logical NOT

Equal to, equal or greater than, equal or less, itpaater
than, less than, not equal to (two alternatives)

Computing terminology:
a brief introduction

m Arguments: Values provided as inputs to a command (input
arguments) or returned by the command (output arguments)

m Command: A user-written statement that provides instructions to the
computer (“statement” is an often used alternative)

m Default: Action taken or value chosen if none has been provided

m Display: To output a listing of text information on the computer
screen

m Echo: To display commands or other input typed by the user

m Execute: To run a program or carry out the instructions specified in a
command

m Print: To output information on a computer printer (often confused
with “display”)

m Returns: Results provided by the computer in response to a
command

On “"handles”

You will often see Scilab’s Help Browser refer to a “handle,” but
Help does not provide a helpful explanation of the term. Here is a

brief account:

that allow you to manipulate the object
(see figure)

A Matlab tutorial gives the following explanation that is also valid for
Scilab: "Whenever Matlab creates a graphics object, it assigns an
identifier (called handle) to it. You can use this handle to access the
object’s properties.”

You need handles to edit graphical plots beyond the means offered
by basic plot functions (plot2d(), plot3d(), etc.)

We'll return handles when discussing graphics & plotting (Ch. 7)

In graphics software the word handle refers _ _
to the points placed around a figure or plot o

+

Check handles

with gcf()

The function plot2d()
produces the plot below

The command gcf() gives
the list to the right

The list is the handle for the
defined function (Scilab
literature also refers to
individual rows in the list by
the term “handle”)

#

-->X = linspace(0,4*%pi,100); plot2d(x,0.5*cos(x))

-—->f = gcf()

f =

Handle of type "Figure" with properties:

children: "Axes*
figure_position = [567,485]
figure_size = [628,592]
axes_size =[610,460]
auto_resize = "on"

viewport = [0,0]

figure_name = "Graphic window number %d"
figure_id =0

info_message ="
color_map= matrix 32x3
pixmap = "off*
pixel_drawing_mode = "copy*
anti_aliasing = "off*
immediate_drawing = "on"
background = -2

visible = "on"

rotation_style = "unary*
event_handler ="
event_handler_enable = "off*
user_data =]

foo

m The term “foo” is used in many tutorials. It may be confusing
if you are not intimately familiar with programming

m Simply stated, foo can be interpreted as “something comes
here.” The professional expression is placeholder name, also
referred to as metasyntactic variable

m Example:
for k = 1:2'n
foo;
end

m Alternative placeholder names that you may come across are
foobar, bar, and baz. I prefer to use dots (....)

PDr.EW I
Johnny Helkell

T S
3. Playing with the

Console & Editor

Those awkward first steps; a bit
about what Scilab does (@

Return to Contents

Console keyboard
shortcuts

+

Keyboard shortcuts allow
speedier execution of
commands, but require
frequent use to stay

memorlzed :;raphhj : exporting and print Keyboard Shortcuts in the Console Window
Itl’za Structures Descri ptiO n

In the Help Browser, £ i T ™

Click: Console/console il T

for a list of keyboard .

S h O rtc uts } ut functions

The simplest ones to TOTTaT

memorize are:
F1 = Open Help Browser
F2 = Clear Console

Etrl +C Co

Cirl + D or
DELETE

Functions It + F or RIGHT mor

M 1| lem+Hor b & w . ; .

[~ & 555

Simple calculations

n Scilab Console |ﬂ|i__'
File Edit Preferences Control Applications

m The Console can be used as a
calculator by writing arithmetic
expressions after the command
prompt and pressing Enter

m If no variable name is given, Scilab
uses the inbuilt variable ans

m When a variable name is given
(here alpha) it will be used

——>»heta = 242, gamma = 3+3

Instead. T[|S an |nbU||t Varlable Warning : redefining function: beta

(constant) represented by %pi

m EXxpressions can be written on the _
same line by separating them with arning : redefining function: gamma
a comma (the warning can be
ignored)

m Scilab displays an executed
command unless it ends with a
semicolon (;)

+

List of variables (1/2)

| ﬂ Scilab Console

The command B e A
who (+ Enter) 2E| 4 00BAGS
produces a list of |
some Scilab
variables. At least
on my Windows
Vista laptop the
columns are right
aligned (French
logic or a bug?).
Note that
variables from the
previous example
are displayed

List of variables (2/2)
+ fmt“—_

m The command browsevar >

- o Mame

opens the Variable Browser i s

window (it used to be called

Browser Variables, thus the
command browsevar)

m The list that pops up gives
information about the type]
and size of each variable —» ::

m Recall that the Variable
Browser also can be called
via the menu bar:
Applications/Variable
Browser

Entering numbers

Scilab allows numbers to be
entered in different ways, as
shown in this example

Some expressions have
alternate forms. For instance,
there are three power
expressions (), (**) and (.),
but Scilab picks them in that
calling order

Note that e and & are given with
seven decimals, which puts
limits to the achievable accuracy
(a function for double precision
does exist)

Consult Help if you need to
change the display format

Note: From now on I'll show
only the contents of the Console

E Scilab Consale

Eile Edit Preferences Centrol Applications 7

(4 B | ob

cphE A S ® %@

-->0.1, le-1, 23, exp(1), %pi
ans =

0.1
ans =

0.1

8.
ans =

2.7182818
%pi =

(on light yellow background)

3.1415927

Computing precision

~>a=1-5%.2
a =

(0.

->p=1-.2-2-2-2-.2
b =

¢ 5.551D-17

Look at the two examples to the
left. In both cases we are
computing 1-5*0.2, but in two
EENRENS

In the first case the answer is
correct (0)

In the second case the answer is
5.55*%10-17, which quite obviously
is incorrect

The reason is that numeric
computing has finite precision
(rounding errors)

We must take this limitation into
account in Scilab simulations

Computing precision

+(2/ 2)

Here are two more cases where finite precision

shows up. The answers should be 0 (zero) and T -->a = sin(%pi)
(True) respectively (Note that 1.225D-15, —
1.225e-16, 1.225*10™-16 and 1.225*10-16 1.225D-16
express the same thing) s -G

ans =

Assume that the mentioned variable a is part of

a script with an if...then...else...end structure
(conditional branching will be covered in Chapter ~
11). The result is that alternative 1 is never f00

executed because a is never exactly zero 8 if 3 == 0 then
alternative 1

F

else

We must test a with some finite bounds, e.qg.: Slternative 2

end

if abs(a) < 1le- 6 then

""" \ |a| < 106

Displaying graphics

‘ m The Console can also be used
to give commands for

& Graphic window number

plotting graphics:

T Eal D @

-->X = linspace(-%pi,%pi,40);

-->y = linspace(-%pi,%pi,40);

-->plot3d(x,y,sinh(x")*cos(y))

m The graphical picture is
plotted in the Graphics
Window that pops up
automatically (more in Ex. 1)

m The meaning of the entered
code will become clear as we
proceed

Command line editing

m Suppose we make a mistake when
entering the command line and
Scilab returns an error message

m Instead of retyping the whole line, ->a=2;b = sqt(a)
we can press the up arrow (1) on I-eror 4
the keyboard to return the line Undefined variable: sqt P
: ress up
and correct the mistake e —
-->a = 2; b = sqt(a)
= In the shown example the '
function for the square root, sqri), —->a = 2; b = sqrt(a) Correct

was first erroneously typed sqt () b =

m Note that this is just one of 1.4142136
several alternatives for command
line editing

+

Editing demo

m Evaluate the function

log(s? — 2s-cos(m/5) + 1)
fors = 0.5, 0.95, and 1

m Do not rewrite the function, use
instead the up arrow to edit
previous commands!

-->5=.5; log(s"2-2*s*cos(%pi/5)+1)

ans =

- 0.8187489

-->5=.95; Jlog(s"2-2*s*cos(%pi/5)+1)

ans =

- 1.006851

-->5=1:)log(s"2-2*s*cos(%opi/5)+1)
ans =

- 0.9624237

Complex numbers

-->X = 2 + 3*%i;

-->abs(x) _ rori o
» Scilab handles complex ans = oy S
numbers as easily as real 3.6055513 71 =
numbers
__>rea|(x) 1.+4.
m The variable %i stands for -1 ans =

—->72 =X*Yy

z2 =
m The first example shows how .
Scilab evaluates some —->jmag(x) 5. +i
functions with the complex ans =)
argument x = 2 + 3i a3 =xly
3. z3 =
. . . 4
m An imaginary sin() argument i -0.5+ 2.5i
produces a result! —
m The second example shows / HUSEAREL = 4ol
how Scilab does arithmetic

- - -->at ' , |
operations with two complex i a

equations, x and y

0.9827937

Vectorized functions

+

m Scilab functions are vectorized, meaning .
that functions can be called with vectorial R
arguments

m In the shown example, first a column
vector called t is created

m Next the vector is used as argument in
the sin() function, in the expression fory —__

-->y = sin(0.2*t)
m If the values of t are of no interest, the y =

printout can be avoided by putting a 0

semicolon after the expression for t: 0.1986693
0.3894183

PR 0.5646425
t = [0:5]"; y = sin(0.2%t) 0.7173561
0.8414710

m Vectors will be discussed in connection
with matrices in Chapter 5

Long command lines

+

- Leing @elmiising pegson: 14416164 718418 +16+21 420453424425
can be divided among two or
more lines
= One tool for that purpose is e YRS & W S S TG D
two or three periods (..) to _>1/7 + 1/8 + 1/9 + 1/10 + 1/11 + 1/12
indicate that the statement q =
continues 2.1032107
= Long matrix expressions can A A
be written on separate lines -->1112 13 14 15]
by omitting the semicolon that A=

normally ends a row (bottom)

Polynomials

= You run into polynomials e.g. if you _>5=0%s:
use frequency domain (state-space) D 2 RS
analysis in control engineering

m Here s = %s is the seed that defines NN
the polynomial of “s”. An alternative, i
often used form of the seed /
definition is s = (0,’s’ _+ "
m The polynomials can be defined -~ ’// 65+ 79e 4 21 2 83 4
o . + 225+ 21.0S+0S+S
through their root vectors //v

m Scilab translates the roots to their
respective polynomials

s When we divide the num polynomial 2 3
by the den polynomial, Scilab 25+35+5

presents the full polynomial
expression 6.5625 + 225 + 21.55 + 85 + S

-->fr=num/den

Roots of polynomials

m Determining roots (zeros) of R
polynomials can be a tedious SX=TOOtS(2*S+3%612+513)
undertaking X =

m However, Scilab has a handy 0
tool for the task in the form of -1,
the roots() function - 2.

m To the right the polynomials Bt
on the previous slide have -->7=r100ts(6.5625+22*s+21.5+5"2+8*5"3+5/)
been determined z =

m Note that the seed s=%s has - 0.5
to be defined here as well -15

-2.5
-3.5

Poles and zeros: plzr()

‘ 4+ Graphic window number 0

-->5=04ps;

m The plzr() function B Took gait 2 _->sys=syslin('c’,((1+2*s)*(1+3*s))/(s*(s*s+s+1))):

B & & O @

= T

plots the poles and -->plzr(sys)

zeros of a polynomial

m The syslin() function
used here will be
discussed later

m When pressing Enter
after the plzr(sys)
command, the
Graphics Window
opens and displays the
plot (The Graphics
Window will be .
discussed in Example
1-1)

Gadgets (1/2): calendar
+

Among Scilab’s built-in gadgets
is a calendar. The command ans(l)

@l -->calendar(2013,6)
ans—=

calendar() Jun 2013

returns the calendar for the ans(2)
present month, the command

calendar(y,m)

returns the calendar for the year
and month in case (shown for
June 2013)

Gadgets (2/2): puzzle

Demos

Another gadget is a puzzle that ' Demos -

ikedaseiohubest ki
Demonstrations\Tcl/Tk\Puzzle cul

Genetic Algorithms Scale
. Simulated Annealing
| % 15-Puzzle Demonstration Lo o Graphics

. ' | Processing
A 15-puzzle appears below as a collection of "

buttons. Click on any of the pieces next to wiimizaiitn Snd Sielalon

the space, and that piece will slide over the Polynomials

space. Continue this until the pieces are Simulation

arranged in numerical order from upper-left
|to lower-right.

5 le handling
Random

TR |
Dismiss

Scilab the spy: e
H istowma nager |

+

Software that we install on our
computers tend to spy on us by
collecting information on what we
do. Have you ever cared to figure
out how much data e.g. Windows'
index.dat has stored about your
computer & surfing behavior?

Scilab spies with (at least) its 206+ % =
history manager. You can access o
this data by entering /
displayhistory() on the Console. |
The file can be cleaned via
Preferences\Clear History

Sorry,
| could not copy-paste an extract because
PowerPointrashed repeatedly (it happen:
to Bill Gates as well... Often.)

VJ

PDr.EW l
Johnny Helkell

+
4. Examples, Set 1

Demonstration of basic Scilab
programs

Return to Contents

Example 1-1: script for a

S

+

imple plot

Let’s elaborate on the

example from “Scilab in 15
minutes” d // ploti.sce

We work with the Editor // A simple 2D plot of a sine function /

; ; // with the abscissa x = 0 ... 10, /
usmg the Same SCI’Ipt ds / // and amplitude A = increases with x /
before, but with added YA // The function itself is y(x) /
comments =

. . x =[0:.1:10]; // The abscissa x is a row vector

Save the functlo_n When IF / A = 0.5%x; // Modulated amplitude, row vector
has been typed in. I call |t_ y = A.*sin(2*x); // Element-by-element multiplication
plotl.sce and have saved it plot(y) // Plot command

on my USB thumb drive,
you can save it wherever

you like —
To run the script, Click on Note: Comments begin with a double

the Editor’s Execute icon slash (//). Scilab disregards everything
What happens is shown on behind the // when it executes the code

the next slide

Ex 1-1: the Graphics
Window

+

As seen before,
Scilab uses a
third window,
the Graphics
Window, to
present the plot

Information on
the executed
script is echoed
to the Console.
Error messages
are also
displayed on
the Console

These three are the windows that we mainly work
with, but there are more. You have already seen a
few like the Help Browser and Variable Browser

Ex 1-1: using the Console

ﬂ Scilab Console

File Edit Preferences Control Applications I

m The script could also be 2B AD0 B AG 2 2 2@
executed from the Console '

m After the command prompt,
type

exec plotl.sce

ﬂ Scilab Console
File Edit Preferences Control Applications I

m And the result is an error — =t e
sEl A0 B AZ S = e

message
m [he reason? Scilab looks for

plotl.sce in the wrong place ~->exec plotl.sce
m [0 see where Scilab was File

looking, Click: File\Display
current directory

m The answer is shown in the
lower window: It looks in —»
Scilab’s program file, which
is not where I put it

E Scilab Consale =L 2 x|
i i - |] ey ||"-‘r | = | ol | ol

m Click on the icon Change Iﬁ,,- = S8 e @
current directory... i BTt

= A new window pops up

m Define the right file with
the drop-down menu

| ClICk- Open ﬁ Select a directory

m You can then returt Lookn: | . Sciab examples
Console and type in the
command

exec plotl.sce v
. Desktop
m And it works, as seen on -

the next slide

Documents

Ay
Note: The command chdir () st

a”OWS the dlreCtOry to be .:. File name: H:\Dr W Writings\Sdlab examples
changed “on the run” Nty Hesoftmes [imies

Ex 1-1: plot and echo

Up pops the
Graphics
Window with a
plot of the
defined
function...

while the script
is echoed to the
Command
Window —
(Console)

Ex 1-1: comments (1/4),
command details

+

Editor contents will from
now on be shown on light
green background

m The vector definition
x=[0:0.1:10] can be = ——»
interpreted as “from 0 to
10 in steps of 0.1"

m Multiplication by the Dot
Operator (.*) is necessary
to tell Scilab it should
multiply the vectors
element-by-element.
Change to ordinary
multiplication (*) and you'll
get this error message on
the Console —_—

// plotl.sce

// A simple 2D plot of a sine function /
// with the abscissa x = 0 ... 10, /
// and amplitude A = increases with x /
// The function itself is y(x) /

x = [0:.1:10]; // The abscissa x is a row vector

A = 0.5%x; // Modulated amplitude, row vector
y = A.*sin(2*x); // Element-by-element multiplication
plot(y) // Plot command

-->exec('H:\Dr.EW\Writings\Scilab examples\plotl.sce', -1)

y = A*sin(2*x); // Element-by-element multiplication
I--error 10

Inconsistent multiplication.

atline 10 of exec file called by :
exec('H:\Dr.EW\Writings\Scilab examples\plotl.sce', -1)

>

Ex 1-1: comments (2/3),

the plot
+

The plot is very basic as it has g ——
no title, axis labels, or grid. Bile Tools Edit T
We'll return to them in the % @6l e
next example S m—

The abscissa scale may seem
strange, the maximum value
for x was 10 but the scale
goes to 100. The figure 100 is
actually the number of
calculations, since they were
made in steps of 0.1 up to 10.
Try to change t to
x=[0:0.2:10]; and you'll
see that the scale ends at 50
(the modified script must be
saved before it can be run)

+

Ex 1-1: comments (3/4),

clf

Assume that we make a
change to the script, e.q.
increase the frequency to
sin(5*s), save it, and execute
it immediately after a previous
run

As a result Scilab plots the
new graph on top of the
previous one. To avoid this we
must either

¢ Close the Graphics Window
manually after each run, or
e Add the function clf (clear

L) - = - — | -
#= Graphic window number 0 ! A

File Tools Edit ?

89 0 @

figure) to the script to make
Scilab clean the window

-l cIf;
x = [0:.1:10];
A = 0.5%x;
y = A.*sin(5*x);

plot(y)

Ex 1-1: comments (4/4),
cleaning trash

+

Some programmers prefer to
safeguard against different // plotl.sce
forms of old junk that may

i : i // A simple 2D plot of a sine function /
CEHEERNI R EESCelii(olaRe | M // with the abscissa x = 0 ... 10, /

the script. To do thiS, three // and amplitude A = increases with x /

The fi ion itself i
commands are added at the // The function ftseif is y(x) /
beginning of the script: @ cear, cic, off;
X=10=1"10];, // The abscissa x is a row vector
° clear, removes items from A = 0.5%x; // Modulated amplitude, row vector

y = A.*sin(2*x); // Element-by-element multiplication

the workspace and frees
memory*
e clc, cleans the Console; the

echo signal is mainly erased | Thus our final script looks like this. Pay
= le_, wipes an open Graphics attention to the semicolon (;) at the end
Window of each expression apart from the last

plot(y) // Plot command

*) Careful withclear, it may cause havoc in some cases (there will denao on
this later)

Example 1-2: the task, a
decaying linear chirp

+

Write the script for a linearly frequency modulated sinusoidal
signal s(t), i.e. a linear chirp of the type

s(t) = A(t) - sin {[2n(f, + k(Dt] + ¢}

where k is the rate of frequency change, or chirp rate
Use 2.5 periods of the basic frequency
The amplitude should decay exponentially, A(t) = 2e7t/3

The initial phase shift ¢ shall be /4

Plot and print the result with a plotting method that differs
from the previous one

The plot shall have grid, title, and axis labels

Plug in the commands plot (), histplot (), surf (), and plot3d() on
the Console to view examples of Scilab plots. See also Chapter 7.

Ex 1-2: first iteration

+

m The linspace() function creates Jif s e 25 /
a linea rly Space I3|0ttln9 vector // Plots a sinusoidal function of the type /
with the arguments from, to, /'s = A(t)(sin(wt+x(t)+phi)), where w = angular /
number of points. The default Z ;ﬁf:e't’;’hﬁt)aidﬂ:&l;Tgymn;ﬁtﬂztlOn' il ;
value is 100 points, but more are ’
needed here clear, clc, df;

f=1; /| Frequency
. W = 2*%pi*f;
m Here is the Dot Operator (.*) phi = Y%pi/4; // Initial phase shift

again fin = (4*%pi)/w; // End of plot
\ t = linspace(0,fin,1000);
m The plot2d() produces the 2D A = 27exp();

s = A*sin(w*t + 10*t”~2 + phi);
plot. The argumentst and s ——p [evX(£H)

stands for the x and y-axes, the
number 5 produces a red graph

Note: fin is used as the end of plot
variable name because end is
reserved (Scilab keyword)

Ex 1-2: plot
|

The plot looks as
expected—including
the initial phase
shift—but it lacks a
grid, title, and axis
labels

plot2d () is a more
versatile function
than plot (), which
is similar to the plot
function in Matlab

Ex 1-2: improved plot
+

Here I have // f-modulation2.sce
added code // Plots a sinusoidal function of the type /
/] s = A(t)(sin(wt+x(t)+phi)), where w = angular /
tO'p|Ot the // velocity, x(t) = frequency modulation, phi =
grid,) €y@lelOM // phase shift, and A(t) = amplitude
title, xtitle(), | N——
and x and Y f=1; . SINUSOIDAL PLOT
W = 2*%pi*f; 20 ' ;
|abe|5, phi = %pi/4 :
xlabel(), fin - (4*%p(i)/¥v;) /] End)
t = linspace(0,fin,1000); !
y18b61(>- A = 2*exp(-t); .

OgU[s[SPNs]VI M Ml S = A.*sin(w*t + 10%tA2 + phi);
works plot2d(t,s,5)

xgrid()
\» xtitle("'SINUSOIDAL PLOT")
xlabel('t")

ylabel('Amplitude')

Amplitude
—T— _ _J__
1 1

1
1T

Ex 1-2:
=
|| []
p rl n tl n g DECAYING LINEAR CHIRP IN SCILAB

/f f-modulation2.sce

m Scilab’s windows (Console, Editor, / ot a skl tntonoftheype
. . fs = Al IN(wt+x{)+phi)), where w = angular

Gra phICS WlndOW) a” have bOth \-'Tl.ocit\-";;f'it).= ?i?tl)le:q mlqtdu:ation_. phi =
normal and advanced print functions e |

m One way of getting a coherent ;' /1 Frequency
printable document is to copy the phi =115 /il phase stin
contents of the windows and paste t = inspace(0,in, 000
them |nt0 a WOI’d proceSS|ng page 5=A(t5(m)|t+ "tA2 + phiy;
(Scilab supports LaTeX) 0 |

m The image shown here was done on e

MS Word (OO0 Writer did not
recognize Scilab’s file type). It was
then printed as .PDF, saved as a
.PNG file, and finally cropped with
MS Picture Manager

m That’s a tedious method. Consult
Help for advanced print features

S SOIDALPLOT

Ex 1-2: checking

To show that the frequency is
linearly modulated, we can
add frequency as a function
of t to the plot

For that we add the function
f_mom to the script

The plot command must also
be modified. We
— shift back to the plot ()
command and include both

parameters, together with
color information ('r’, ‘b")

— fuse x-label 't" as an
argument of xtitle ()

— swap y-label for 1egendm
the argument 2 refers to the _
upper left hand corner

// f-modulation3.sce /

// Plots a sinusoidal function of the type /
/] s = A(t)(sin(wt+x(t)+phi)), where w = angular /
// velocity, x(t) = frequency modulation, phi = /
// phase shift, and A(t) = amplitude. Second /
// plot for momentary frequency values /

clear, clc, clf;

f=1;

w = 2*%pi*f;

phi = %pi/4;

fin = (4*%pi)/w;

t = linspace(0,fin,1000);
A = 2*exp(-t);

s = A*sin(w*t + 10*t~2 + phi);

f_ mom = f + 10*t; // Momentary frequency
plot(t,s,'r',t,f_mom,'b")

xgrid()

xtitle('SINUSOIDAL PLOT','t")

legend('s','f_mom',2)

/| Frequency

// Initial phase shift
// End of plot

|

Ex 1-2: final plot

OK, not an optimal
plot but the
information is
there.

With the big
differences in
vertical scales, we
should either use
logarithmic y axis
or separate the
two into subplots—
but that comes
later

SINUSOIDAL PLOT

Pay attention
to the legend

Ex 1-2: discussion

m As was said earlier, Scilab evolves with time and approaches
Matlab with each release

m As an example in case, Scilab’s Help Browser recognizes the
xlabel() and ylabel() that I used in the improved plot as
Matlab functions and also refers to them as Scilab functions

m However, there are plenty of obsolete Scilab functions and
you find them all over if you rely on old tutorials. Even Scilab’s
Help Browser may refer to them

m Be careful, particularly if a function name begins with x- (cf.
note in Chapter 7)

m You may have noticed that I begin the script with a comment
stating the name of the script (e.g. // {—-modulation3.sce /). I
do this to help identify the script when I am looking at a
printout

Example 1-3: Lotto, the

task
+

The first part of this example is
borrowed from Makela’s tutorial

Task 1: Create a user defined
function (UDF) that draws a row
of Lotto numbers. Assume that
the Lotto row contains 7
numbers, 1-39

Task 2: Write a script that calls
the previous function (or a
modification of it, if hecessary)
and produces a plot of it to
visually indicate if the function
produces random numbers.
Generate 10,000 draws for the
task

Ex 1-3: task 1, script
+ Function ID, not a comment

m dt=getdate() returns

dd-mm-yyyy function lotto
m rand(‘seed’,n) sets
the random gene- // The function draws 7 Lotto numbers [1,39] by first /
// creating a seed using current date and time /
rator seed to n // (second, millisecond) information
m dt(9) returns a
number between 00 \piERer ey // Pick current date

y

rand('seed’,1000*dt(9)+dt(10)); // Initialize random generator
numbers=floor(1+39*rand(1,7)); // Draw Lotto row
while(length(unigue(numbers))<7) // If number repeats in row,

000...999 / numbers=floor(1+39*rand(1,7)); // then drawn a new row

and 59, dt(10)
returns milliseconds

2 end
= The Whlle"_‘end numbers=gsort(numbers); // Sort numbers in decreasing order
construct will be disp(numbers(7:-1:1)); // Display in increasing order

covered under the endfunction
discussion below

Why the hassle with the seed? Without it Scilabegates the same sequence for
each session. TheD00*t(9)+ dt(10) argument improves randomness.

Ex 1-3: task 1, saving
+This script

(function) differs a
bit from the earlier

Save in: Scilab examples
ones, so let's go .
through the save o Wi

0]0/S ration: . W vonpaT W triangle_area

Save the script as |k Ein gemer® [fotto s —
lOttO N Cl | n YOU I Files of type: | Scilab SCI files(*.sci) Cancel |
preferred file |

Next, Click on the Notes el =kil
Execute icon of T——

the Editor to load
the saved file into
Scilab

Continues on next
slide...

1 |function Jotto

Ex 1-3: task 1, running

+

If the Console shows a
Warning, check with Help Warning : redefining function: lotto

what it means. It can be . Use funcprot(0) to avoid this message
ignored or the funcprot (0)
command can be added tC

-->exec('H:\Dr.EW\Writings\Scilab examples\lotto.sci', -1)

-->exec('H:\Dr.EW\Writings\Scilab examples\lotto.sci', -1)

the S_Cript to avoid the _ Warning : redefining function: lotto
warning. You can also jump . Use funcprot(0) to avoid this message
to Chapter 18 for a brief

-->help funcprot

explanation
-->|otto
Execute (run) the
loaded function by
entering the function
name on the Console

3. 5. 13. 15. 33. 37. 39.

And the winning
numbers are...

Ex 1-3: task 1, discussion

+

m This is already an intermediate level
programming exercise. Don't worry if
it gives you problems. Most of its
details will be repeated later

m The flowchart of the while...end
construct is shown to the right. Pay
attention to the elegant solution for
testing uniqueness of the numbers:

length(unique(humbers)) < 7 <:>

However, in theory it could become
an almost infinite loop...

m We'll return to while ... end loops in
Chapter 11

;

Draw Lotto row

g

Draw new row

All numbers
unique?

Sort numbers

:

A
\

Ex 1-3: task 2, script
(1/2)
+

The previous UDF must
be modified if it is
called by a separate
code' 1) De|ete sorting // The script asks for the number of Lotto draws that we /
" // wish to do, using a separate dialog box. It then calls /
and dlsplay and 2) // the local UDF lottodraw()) that generates a row of N /
redefine the function // random Lotto numbers in the range [1,39]. It sorts the /
. // numbers into a vector by adding one (1) to the relevant /
ID to allow Ca”mg // vector element for each corresponding hit. The result
// is plotted after the entered number of draws.

// lotto2.sce

In the latter case it has
one or more input
arguments (in) that are e

givgn to it by the // (SUBROUTINE) function lottodraw():
calling command and e fonction drame N Lotto morbo T 301, with
e function draws N Lotto numbers [1,39], wi
OUtpUt_ argume”ts [OUt] // N being defined through the input argument in.
by which it returns the // It delivers the drawn row to the calling script

result of its calculations // command through the output argument out. The

. // randomness of the drawn numbers is improved by
to the Ca”mg Command // first creating a seed using current date and

(see next SlidE) // time (second, millisecond) information.

Ex 1-3: task 2, script
4~7(2/ 2) function out=|ottodraw(in)

Redefined function rand('seed',1000*dt(9)+dt(10)); // Initialize random generator

. out = floor(1+39*rand(1,in)); // Draw Lotto row (out variable)
(SUbI’OUtII’lE) while(length(unique(out))<in) // If number repeats in row,
out = floor(1+39*rand(1,in)); // then a new row is drawn
The number of Lotto end
draws that we are endfunction

looking for is entered

via a separate dialog

box x dialog() BRSNS M = evstr(x_dialog(‘Enter # of... // Open dialog box
— lotto draws ',"));

// (MAIN) Call subroutine, update histogram, plot:

N=7; // Lotto numbers to draw
The drawn Lotto columns = zeros(1,39); // Initiate collecting vector
numbers are collected for k = 1:M
in the columns vector nulmbers(= Ioit:)todr)aw(l}l); (/b / C)a_:llto subroutine
.- columns(numbers)=columns(numbers)+1;
InSIde the for ... end // Add 1 for drawn number

loop end

The result is plotted as REglLSEEECER) /| Define x axis
plot2d2(x,columns,style=2) // Plot as step functions

SR {Viglen[ls SRR | (RESULT OF LOTTO DRAWS') // Add title & labels
xlabel('Lotto numbers [1,39]")

ylabel('Hits")

Ex 1-3: task 2, execution

& plot
+

_ The dialog box pops up when
| =—— executing the script. Enter the wanted
number of Lotto draws and Click OK

RESULT OF LOTTO DRAWS

The result is plotted on 1860
the Graphics Window. It 1540
is not too bad, 1820
considering that the 1900
average of 10,000 draws 2 17a0
is 7x10,000/39 = 1,795

It takes my 1.6 GHz dual
core processor about 10

seconds to compute
10,000 draws

Ex 1-3: comments (1/3)

m This was not exactly an engineering problem, but it showed
many features of Scilab

m The UDF in Task 1 is unusual in being closed, having no input
or output arguments—you just use it as it is. The local UDF
demonstrated in Task 2 is the normal case

= In addition to rand(), Task 1 brings in several useful
functions: getdate(), floor(), unique(), and gsort()

m The script in Task 2 is commented at length. Adding headings
and comments takes time and they require space, but
comments are absolutely necessary to understand the
program at a later date

m Task 2 introduces the dialog box, a GUI (graphical user
interface) feature to which we shall return in Chapter 15

Ex 1-3: comments (2/3)
+

= In addition to the plot () and plot2d() commands that we
used, Scilab has numerous other ways of creating plots,
together with options for adding clarifying text strings to the
plots. Plotting will be covered in more detail in Chapter 7

m Flow control—in this case the term refers to the use of
conditional branch structures—will be discussed in Chapter 11

m Examples 1-1 ... 1-3 were also intended to stress the fact that
we are forced to “think matrix-wise” when working with
Scilab. For instance, Scilab immediately generates an error
message if we attempt to do ordinary multiplication (*) when
a parameter is in matrix form and requires Dot multiplication
(.*) (Recall Example 1-17?)

Ex 1-3: comments (3/3),
rounding functions

The rounding function floor() is one
of four rounding functions in Scilab:

round(), fix() (or int()), floor(), and
ceil()

-->round(-2.7), round(2.7)
ans =

Pay attention to the difference | ~>floor(-2.7), floor(2.7)
between the first and the two last >fix(-2.7), fix(2.7)
ones s =
round() rounds to nearest integel
fix() or —>ceil(-2.7), ceil(2.7)
' ' ans =
int() returns integer part
floor() rounds down
ceil() rounds up

PDr.EW I
Johnny Helkell

5. Matrices, functions &
operators

An overview of basic matrix
operations, functions, and
operators

N\

Return to Contents

Introduction

T

As Scilab is built around matrices we are forced to use them
Scilab stores numbers (and characters) in matrices

A matrix can be seen as a table, consisting of m rows and 7 columns
(rmxn matrices, also denoted /xj matrices)

Scalar variables do not exist per se, they are treated as 1x1 matrices
The general form of a Scilab matrix (here 3x3 matrix) is

A=1[1112 13; 21 22 23; 31 32 33]

Row elements can also be separated by commas:
A=111,12,13; 21, 22, 23; 31, 32, 33]

In both cases semicolons separate rows

The next page shows both alternatives for the 3x3 matrix

“[The vector] has never been of the slightest osany creature.”
Attributed to Lord Kelvin

The 3x3 matrix

+

Both alternatives for expressing
matrices are interpreted in the — |G R
same way by Scilab. Pick

11. 12. 13.

whichever you like 51 92 23
31. 32. 33.

>A =[11, 12, 13; 21, 22, 23; 31, 32, 33]

Note: Scilab may cause a copied screl:en A =
text (as seen here) to be underlined 6L a9 s
when pasted to another document. If gi gg gg

S0, put the cursor at the end of the text
and press$3ackspace (<)

Row and column vectors

+

Task 1: Create a row vector with

first element O, last element 1 and o
increment (step size) 0.2. Notethe — o024
order and colons that divide
elements 0. 0.2 04 06 08 1.
Task 2: Create a similar column
vector. Note the asterisk that gl > coumn=10:0-2:41
signifies the matrix transpose

0.
0.2

In case the Console window is set 0.4
too small and all elements do not — 82
fit in, Scilab interrupts plotting and 1,

asks if it should continue

+

Some special matrices

3x3 identity ——» EERSNCEK)

matrix C =

1. 0. O.

0. 1. O.

0. 0. 1.
3X2 matrix ——p W)
of ones D =

1. 1.

1. 1.

1. 1.
2X3 Z_el'O e e -->E=z€r05(2,3)
matrix E =

0. 0. O
0. 0. O

The function rand(m,n) creates a
uniformly distributed mxn matrix.
Adding the argument ‘normal’
creates a normal distributed matrix

-->rand(4,4)
ans =

0.2312237
0.2164633
0.8833888
0.6525135

0.3076091
0.9329616
0.2146008
0.312642

0.3616361 0.3321719

0.2922267 0.5935095

0.5664249 0.5015342
0.4826472 0.4368588

-->rand(4,4,'normal’)
ans =

- 1.3772844
0.7915156
- 0.1728369
0.7629083

- 0.6019869
- 0.0239455
- 1.5619521
- 0.5637165

- 0.3888655
- 0.6594738

0.6543045
- 0.6773066

- 0.7004486
0.3353388
- 0.8262233
0.4694334

Matrices are defined with square brackets, [], while parentheses, (), are

used to cluster function arguments

Basic matrix calculations

->A=[123;456];B=A;C=A+B ->A=[123;456];B=AC=A*B

C = C =

14. 32.
32. T77.

Addition Multiplication (note transpose!)

-->A=[1 2 3; 4 5 6]; B=[A]; C=A/B
C =

-->A =[2 3; 4 5]; H=inv(A)

1. 1.518D-16
3.795D-15 1.

Division (note rounding errors) Inverse matrix

Note 1: Rules for matrix operations must of course be observed!
Note 2: Scilab returns D, not e, for the exponent (1.518D-16); the exact
value is 0 but here we have a case of limited computing accuracy

Durer’s magic square

m German Renaissance artist and
amateur matematician Albrecht

Direr’s “magic” square is a
popular example in linear algebra

m In the window of Durer’s
engraving the sum of any row,
column, or diagonal yield the
same result (34)

m We shall use the magic square to
investigate some aspects of
matrix operations

m The magic square will be
denoted “"M" to set it apart from
other matrices

m Note that many matrix operations
are defined only for square
matrices

sum(), transpose, and
+diasl()

m The magic square is entered in >M=[163213:51011 8

the Console’s command line ——» S ERERPELEVE]
M =

m The statement sum(M)
produces the sum of all SR
elements. This differs from . 6. 7. 12
Matlab, where the same e e
ST T T R s o —>sum(M)
the four columns, i.e., ans =

sum(M) = 34. 34. 34. 34. 136.

m The transpose statement M |
flips the matrix about its main e
diagonal

6. 3. 2. 13

1
5
9
4

16.
m The statement diag(M), 10.

finally, returns the main 4
diagonal as a column vector |

Sum of rows and
columns: sum()

+

m Scilab returns the sums of rows and
columns of a matrix A with the
commands sum(A,’c’) and
sum(A,’r’) respectively

~>A=[123;456;789]

m At first sight the use of * ¢’ and

‘r’ arguments feels odd. The logic —>B = sum(A,'r)
is that * r' returns the sums of B =

matrix columns giving a row vector, 1. 15. 18,
while * ¢’ returns the sums of

matrix rows, a column vector C>C= = U E)

m Alternative statements are: 6.
sum(A,’r’) = sum(A,1) and 15,
sum(A,’c’) = sum(A,2) 2

prod()

m The product of rows and columns
can be formed in a similar way as
sums

prod(A, ‘r’) returns the product
of each column as a row vector ——,
prod(A, ‘c’) returns the product
of each row as a column vector \
prod(A) returns the product of

all matrix elements

™~

-->A=[123;456;7809]
A =

2. 3.
5. 6.
8. 9.

-->prod(A, 'r')
ans =
28.

80. 162.

-->prod(A, 'c')
ans =

6.
120.
504.

-->prod(A)
ans =

362880.

min(), max()

A =

m The same logic continues with the
min() and max() functions

v

s min(A) picks out the smallest —
element in the matrix and
max(A) the biggest -

m min(A, r’) returns a row vector

-->min(A, 'r')

-
consisting of the smallest n
elements in each column \ o

C 2. 0. 1.
m max(A, ‘c’) returns a column

vector containing the biggest
elements in each row

-->max(A, 'c’)
ans =

3.
7.
9.

Min/max position & value

+

m A variation of the min() and max()
functions allow us to determine the
position and value of the smallest alt.

>A=[531:246];

largest matrix element -->[min_val min_pos] = min(A)
min_pos =
m [min_value min_pos] = min(A) —— L s
picks out the position and value min_val =
(in this order!) of the smallest
element in the matrix, [max_val 1

max — -- =
_DOS] maX(A) the Iargest \ n:nggagaI:max_pos] max(A)
m Note 1: The designation of vector
elements (here min_val etc.) is I
irrelevant -
6.

m Note 2: If the matrix contains
multiple min/max values only the
position of the first is returned

mean()

~->A=[123; 45 6]
= And the previously mentioned logic A=
a final time with the mean() 1. 2. 3.
function 4. 5. .
m mean(A) returns the mean - ';f:ej”(’“

value of all matrix elements
3.5

m mean(A, r’) returns a row

vector consisting of the mean \ -;r;ejn(A,)
of each column

o 25 35 45
m mean(A, ‘c’) returns a column

vector containing the mean of \ -;r:ejn(A,)

each row

2.
S

size()

-->v1 =[12 34,
-->v2 =vl1';
. ->A=[1234;5678];
» The function size() can be P |
. . = -->size(A)
used to find out the size of a ans -

matrix 1. 4

m The answer is given as the —>size(v2)

ans =

number of rows and columns
(in that order)

= When row and column
variables are named, the
answer is given in alphabetic
order (here columns first)

m Matrices with string elements
(strings were used in the dialog
- _ i -->size(['You' ‘Me'; 'Alpha’ 'Beta’; ' Two' ‘Three'
b_OX in Ex 1 3 anc! will be a;sslzi([You Me'; 'Alpha’ '‘Beta’; 'Two' "Three'])
discussed in detail later) are
treated the same way 3. 2

length()
+

m The function length() is

related to size(). For a matrix _slength([1.23; 456,7890: 9])
with humeric elements s ans =

length() returns the number 2

of elements '

m For a matrix with string
elements length() returns the
number Of characters in each — -->length(['Hello world' 'SCILAB'; ‘Alpha’ 'Beta’])

ans =
element

m Note that matrices with mixed
numeric and string elements
are not allowed

+

find(condition)

The function find() identifies and
returns the row locations of those
matrix elements that satisfy the
Boolean condition stated in the
argument

An empty matrix ([]) is returned in
case no element satisfies the given
condition

The statement X=3 is not a valid
Boolean condition. Although a
numeric answer is returned, it is
not legitimate

Later we shall se that find() can
also be used with strings

->X=[918;273;635];

—->find(X<5)
ans =

2. 4. 6. 8.

—->find(X==3)
ans =

6. 8.

—->find(X=3
ans =

1.

—->find(X~=3)
ans =

gsort()
+

m Scilab does not recognize Matlab’s >matr=[-14-22;10-33;-450-5]
sort() function (it used to before matr =
version 5.3). Instead we must use] o
gsort(), which is different but .0 -3 3

serves the same purpose -4. 5. 0. -5

-->S_matr = gsort(matr)
S_matr =

m As shown to the right, gsort()
picks out matrix elements in
decreasing order and returns them . 2.0 -3
column by column oy

m We achieve Matlab-like sorting by
adding the arguments 'r’ (row) and |
\il (Increase) tO gSOI”t() -->matr=[-14-22;10-33;-450-5];

i - -->Mtlb_sort = gsort(matr, 'r', '’
m Check with Help for details on Mtlb_sort = asort :

arguments

0. - 3.
1. 4. -
5,

testmatrix()

+

Magic squares of different sizes can
be produced with the
testmatrix(‘magi’,n) function. It is
the same as the magic(n) function in
Matlab

Additional matrices that can be
produced by the testmatrix()
function is testmatrix(‘frk’,n)

which returns the Franck matrix, and
testmatrix(‘hilb’,n) that is the
inverse of the nxn Hilbert matrix.
Check with Help for details

-->testmatrix('magi',4)

ans =

-->testmatrix('magi',5)
ans =

17. 24. 1. 8. 15
23. 5. 7. 14. 1.
4. 6. 13. 20. 22
10. 12. 19. 21. 3.
11. 18. 25. 2. 0.

det(M) & rounding errors

m Practical problems often require the
determinant of a (square) matrix to be
calculated

m The command det () returns the
determinant

m The determinant of Direr’s magic
square is zero (the matrix is singular),
but as shown, the rounding error
prevents Scilab from returning the —
exact answer (recall that we
encountered this problem before)

m To get rid of the rounding error we /

can use the clean () function. It
returns zero for values below 1e-10

-->M = testmatrix('magi',4)

- 1.450D-12

-->clean(det(M))
ans =

0.

Deleting rows and
columns

->m=[163213;510118
m Rows and columns can be deleted by ->96712;41514 1]

using a pair of square brackets

m We start with the 4x4 magic square,
denoted "m” because we shall distort it

m We first delete the third column. The —»
Colon Operator argument is used to
retain all rows, the argument 3 points to
the third column. The result is a 3x4
matrix

m In the second instance we delete the
second row, to end with a 3x3 matrix

Changing rows and
columns

m The logic on the previous slide can be
used to changing rows and columns

= We start from the previous 3x3 matrix —

m First change elements in the second row ——
to zeros

m Then we change the last column to ones

(note transpose) ~—

m These operations can also be seen as
inserting a defined row/column vector in
place of an existing row or column

Addressing matrix elements
by linear indexing

-->M=testmatrix('magi',4)
M =

16. 2. 3. 13.
5. 11. 10. 8.
9. 7. 6. 12
4. 14. 15. 1.

-->M(14)
ans =

8.

~>M([1 6 11 16])
ans =

16.
11.
6.
1.

Scilab regards matrices as column _
vectors. This allows us to address matrix
elements in a simplified way

We start from the 4x4 magic square

Then we pick out the element (2,4),
which is number 14 if you count along
the columns

Next pick out elements of the main
diagonal

Finally, change the
elements of the
second diagonal
to zeros 1

-->M([4 710 13]) =[00 0 O]
|\/| =

2

0

6. .
5. 11.
9. : .
0. 14. 15.

+

Concatenation (1/2)

Concatenation is the process of joining
small matrices to make bigger ones

In fact, even the simplest matrix is
formed by concatenating its individual
elements

The pair of square brackets, [], is the
concatenation operator

The examples illustrate two basic
cases of concatenation (the only
difference are the transposed matrices
in the second case)

Note that if a semicolon (;R is placed
after a command the result is
suppressed, but with a comma (,) it is
displayed (top case)

->A=[123];B=[456],C=[AB]
B =

~->A=[123];B=[456]; C=[AB]
C =

1.
2.
3.

Concatenation (2/2)

m In this example a 4x4 matrix has
been created by concatenating four . | |
2x2 matrices w>AS L1z a1 22

= Lines have been overlaid to highlight ~>B = [13 14, 23 24];

the fused parts -->C = [31 32; 41 42];
m Alternatively, we could have -->D = [33 34; 43 44];

concatenated four row or column _SE=[AB: C D]

vectors, a 3x3 matrix plus a row and E=

column vector, etc.

m E can be treated as a normal 4x4 11. 12
matrix. For instance, the command A 21. 22
= E(2:3, 2:3) picks out the submatrix

31. 32.

[22 23 41, 42.
32 33

Operators (1/4):

+the Colon Operator (:)

m The Colon Operator, (:),
emerged in the earlier examples

m [tis one of the most important
operators in Scilab

m A typically use is in the form:
0:%pi/36:%pi

Meaning: “Starting at 0, step by
7t/36 up to T”

m The first example shows that
the truncated form 1:8
produces a row vector with ->K = M(3:4,2)
increment 1. The second shows K =
how to refer to rows 3-4,
column 2, of the magic square

Operators (2/4):
+more examples with (:)

m The second example on the previous slide was a case of subscript

manipulation of the type M(i:j,k), where i:] refers to the i:th to j:th
rows and k to the k:th column

m There is often need to address part of a matrix. The idea should be
understood well. Below are three more examples

m Note that the Colon Operator alone refers to the entire row or column

-->M = testmatrix('magi',4); -->M = testmatrix('magi',4); -->M = testmatrix('magi',4);

-->A = M(2:3,2:3) -- g -->C =M(3:4,)
A = C =

Operators (3/4):
+the $ Operator

m The $ Operator refers to the last
value, $-1 to the value next to the M = testmatrix(‘mag’4)
last, etc.

m The example to the right shows some
uses of the $ Operator

m The $ Operator can be used to flip the\
order of elements in a vector, as

shown below (an alternative method
was demonstrated in Ex 1-3, Task 1)

->M(1:$-1,9)
ans =

—>v=[3456789;

13.
8.
12.

->v($:-1:1)

ans =

Operators (4/4): the

+Backslash Operator (\)

m Backslash (\) denotes left matrix division. x=A\b is a solution to
A#x=b , which is important e.g. in control engineering

m If Ais square and nonsingular, x=A\b is equivalent to x=inv(A)*b
but the computation burden is smaller and the result is more

accurate
m Here you can see the ~>A=[3-982-37;1-61]; b=[2-13];
warning given when —»
0 0 g -->X = A\b
Scilab sees singularity Warning :
in left division. matrix is close to singular or badly scaled. rcond = 4.1895D-18

computing least squares solution. (see Isq).

In this case Matlab
produces a different
answer than Scilab 0.
(Example from book by - 0.5641026
Hunt et al.) - 0.3846154

Duplicating an mx1
vector to an mxn matrix

+

m The Colon Operator allows us to
duplicate vectors to form a matrix -->m = (2:2:6)’,

-->n =4;

m Assume that we have the column
vector m = (2:2:6)"; meaning that ~->A = m(;, ones(n,1))
it has three rows

m We want to form a 3x4 matrix
where each column consists of the
vector m

Pay attention to the command m(:, ones(n,1). Verbally it can be
interpreted as: “Form a matrix with the number of rows defined by the
column vector m and the number of columns defined by the variable
n. Fill the matrix with ones and multiply each row by the corresponding
value of m. Repeat just once.”

Singularities and left
division

+

The terms “singular” and “nonsingular” emerged on the previous
slide

A requirement of nonsingular square matrices is that the determinant
is nonzero. Consider the following cases:

[g % = 6:3—-2:5=38, itis therefore nonsingular
(6 3] _ B ind that it is <
2 1|7 6:1 — 3:2 = 0, meaning that it is singular

Earlier we found that Direr’s magic square is singular, so is e.g the
matrix A=[123;456; 789]

Before performing left division with square matrices one should
check that the determinant of the coefficient matrix is nonzero, e.g.
by testing that clean(det(A)) ~=

Strings (1/6): they are
matrices too

+

m Character (letters, text, special characters) strings can be created by
using single or double quotes:

'This is a &#ck?2 string’, "and so is this”

m Typical use of strings is in plot commands, to define the title and x
and y-labels. Other uses are interactive inputs and outputs (input(),
disp(), etc.), and write commands (write(%io(2),.....))

m Strings are considered as 1x1 matrices (scalars) in Scilab, but mixed

character/numeric strings are typically 1x3 matrices. It is shown on
the next slid with the command

disp(['Was it €' string(a) 'that you said?'])

} ! !

Elements: 1 2 3

m Example 2-4 shows an additional application of strings

Strings (2/6): disp(),
string()

m The most usual string display
command is disp (), where the -->a = 125;
text has to be in quotation
marks: disp(‘text’) or

diSD([‘teXt’]) IWas it € 125 that you said? !

m Numeric data can be added to
disp([]), but has to be

-->disp(['Was it €' string(a) 'that you said?")

converted to strings using the —>b =521,

function string() _>disp([No, | said € mtlb_num2str(b) ')
m Scilab knows Matlab’s conversion |

command num?2str(), but in the INo, | said € 521 ! !

form mtlb_num2str()
m Leave out the square brackets -l eetol, "R, T U

and the elements are displayed
as a column, starting with the last
(Last In First Out) LIFO

m Commas are optional with square
brzilckets, but not with brackets
only

This is

in action

Strings (3/6): disp() vs.

+mprintf()

m As seen on the previous slide, 1l s
disp() gives LIFO output with an —» =
empty line between the elements

-->disp(‘in action', 'LIFO', 'This is')

in action

m To avoid the empty line, we can
use the mprintf() function with
the line declaration \n . In this
case the Output is First In First - -->mprintf(\nThis is \nFIFO \nin action")
Out. Note that the argument is a This is
single string FIFO

in action

m Check with the Help Browser for
other applications of mprintf()

Strings (4/6): write(),

+

input()

String arguments in the
write () and input ()
functions allow us to build
interactive codes

In the shown example —
write () is first used to give
general information to the
user, after which input ()

prompts for data required in
the calculation

The %io(2) argument of the
write () function tells that
the target is the Console. All
actions after the script is
loaded into Scilab take place
on the Console

// strings.sce /

// Demo of write() and input() functions /

clear,clc;

write(%io(2),'This is an interactive demo.');
write(%io(2),'You will be asked to give the base length');
write(%io(2),'and height of a triangle. Scilab then');
write(%io(2),'computes the area.");

write(%io(2),' "); // Empty row

b = input('Give length of triangle base: ');

h = input('Give height of triangle: ');

write(%io(2),' "); // Empty row
disp(['triangle_area = ' string(b*h/2)])

This is an interactive demo.
You will be asked to give the base length
and height of a triangle. Scilab then
computes the area.

Give length of triangle base: 5
Give height of triangle: 4

Itriangle_area = 10 !

Strings(5/6): other useful
commands

+

Some of the functions discussed earlier in this chapter can have string
matrices (below S) as arguments:

prod(), min(),

max(), mean() Not defined for strings

size(S) Returns the number of rows and columns in S

length(S) Returns the number of characters in each stringeié

Returns theolumnwiseocation of a string element in the

find(condition) matrix*

Returns S with elements rearranged column-by-column
alphanumerically descending order*

gsort(S)

*) See demo on the next slide

Strings(6/6): demo with
find() & gsort()

-->cars = ['Audi' 'BMW' 'Fiat’; '343' 'Saab' 'Xantia']

m To the right is a 3x2 matrix cars =
called “cars \Audi BMW Fiat |

m The function {ind() identifies 1343 Saab Xantia !
and returns the location of a
specified string within the I i (cars=="Saab)
matrix SIS

m In case there is no match, 4.

an empty matrix is returned ->find(cars=='Volvo)

ans =

m The function sort() orders
string elements cqumn-bY- 0
column in alphanumerical

descending order (note that -->gsort(cars)
the number 343 is accepted ~ s =
\S/\{jﬁtl]gsjt being declared IXantia Fiat Audi !

ISaab BMW 343 !

Symbolic computing

m Matrices of character strings are
constructed as ordinary matrices, e.g.
using square brackets

m A very important feature of matrices of
character strings is the capacity to
manipulate and create functions

m Symbolic manipulation of mathematical
objects can be performed using
matrices of character strings

m In the shown cases the function
trianfml () performs symbolic
triangularization of the matrix sc, and
the function evstr () evaluates the
expression tsc

\

——>SC - [IXI lyl; IZI IV+WI]
SC =

Ix vy !
| |

lz v+w |

-->tsc = trianfml(sc)
tsc =

'z v+w !
! !
10 z*y-x*(v+w) !

-->x=1; y=2; z=3; v=5; w=4;

-->evstr(tsc)
ans =

3. 9
0. -3.

Arrays: general

+

m The term “array” refers to any
systematic arrangement of
objects, usually in rows and

columns (numeric arrays, diode
B
= Arrays have some important .
uses, e.g. for building tables _ —
: right division
m Arithmetic operations on arrays _
are done element-by-element,
meaning that addition and -
subtraction are the same for unconjugated array transpose

arrays and matrices

m Scilab uses the Dot Operator (.)
for array operations

m The table to the right is a list of
array operators

Arrays: building a table

m Assume that we have a
column vector n=(09) ' EENENR)E

s We can then build a table __, Bl hlURISIa
with a simple function—in LIS
the shown case with
columns for n, N2 and
2"n

m This type of tables are
useful e.g. when
processing measurement
data

m The second example -->(= powers(3,2)*powers(4,3)
shows that Scilab treats q =
the created table as a
normal matrix

-->p = powers(4:5,1:2)
p —

CoNoOGO~WDEO

32.

+

Element-by-element
multiplication and division

Element-by-element
multiplication with the use of
the Dot Operator can also be
performed on two-dimensional
matrices

In the first example we
multiply, element-by-element,
two 2x2 matrices to form a 2x2
product matrix C

Note the different result with
ordinary matrix multiplication

And here we divide the same /
matrices element-by-element to
form a 2x2 matrix of quotients

->A=[12;34];B=[56;78];C=A*B

0.2 0.3333333
0.4285714 0.5

Right and left division
+

m As shown in the table above, Scilab SA=[12:34]
allows left and right element-by- A =
element division (.\ and ./ L,
respectively) 3 4

m The difference between the two is i 2
which of the two division elements is B=
the numerator and which the
denominator >

m As shown by the examples, left
division means that the element in the A8
left matrix becomes the denominator,
with right division it is the nominator 5 3

\ 0.6666667 - 0.75

-->A./B
ans =

The exponent function exp() is a
special case in being defined as an

) _ . 0.2 0.3333333
element-by-element operation NE i e

+

Dot Operator pitfalls

| _ _ | ~->A=[1234];

In practical simulations Scilab often R

flashes error messages due to wrong —

use of the Dot Operator—or the absence

of it 0.0333333

0.0666667

i 0.1

A particular problem is division with an 0.1333333

integer in the nominator. As shown to
the here, the first case is interpreted by — SR

Scilab as B = (1.0)/A and the second as © -

C=(1.0)./A Try to remember! . 05 0.3333333 0.25

Those with experience of Matlab should
be aware that the priority of the Dot
Operator is different in Scilab

This is not an issue with multiplication --E>E_ = (2)*A

A few more functions
+(1 /5): modulo()

= Then command modulo(n,m) ->modulo(3,2) | —>n=[1,2; 10,15]; m=[2,2; 3,5];
computes the reminder of n ans =
divided by m (where n and m > . ';]f;"oj“'om’m)
are integers) |
1. O
s With matrices modulo() 1. 0.

computes the reminder —
element-by-element

m modulo() comes handy e.g. x=input(‘Give a number :';
when we need to check if a if modulo(x,2)==0 then

: . disp('Number is even');
number is even or odd (the if- =——»

then—else—end construct will disp('Number is odd");
be discussed in Chapter 11) ~~ end

m Thereis a related function Give a number :24 Give a number :1443
pmodulo(). Check with Help

Number is even Number is odd

A few more functions
(2/5): getdate()

‘ m We saw getdate() in action

already in Example 1-3,
Where It WaS used to “>Xp(1),Xp(2),Xp(3),Xp(4),Xp(5),Xp(6),Xp(7)

5 ans =
improve randomness

-->xp=getdate();

_ 2011. (1) present year
m Another use of getdate() is to ans =
put a date stamp on the
printout of a simulation > (2) present month
m getdate() has numerous . (3) present week
alternative arguments. In

addition to those used in Ex. | (4) day of the year
1-3 there are e.qg. the ones —p
shown to the right. Check

with Help for details

(5) weekday (Thu)

m The starting point of the . (6) day of the month
“clock” of getdate() is UTC
00:00 on 1 January 1970 _ (7) hour of the day

A few more functions

+(3/5): unique()

m Recall that unique() was used ~>M=round(5*rand(5,1)) |[PUNEENETCIPTS
in Ex. 1-3 in the condition M = up in Ex. 1-3
length(unique(numbers))<7 = 2 9 B 4
to ascertain that the lotto row

contained only unique numbers)

ans =

0 and 3

m Here unique() isused to ——» are absent

identify generated integers in
the range [1,5]

m In the second case unique() A=[0011;
picks out unique rows in a o1t Unique rows are:
matrix. Change ‘r’ to ‘¢’ to find 022 2:
unique columns = 2011;
00117;

s Compare unique() with find()

.] disp(['Unigue rows are:'
that was discussed earlier e

A few more functions

+(4/ 5): rand()

m We have seen the random // rand_demol.sce
number generator rand()

= clear,clc,clf;
several times already
u_fun=rand(1,2000);
m rand() can generate two subplot(121);
types of numbers, either histplot([-4:0.1:4],u_fun,2,'073", ',[-4,0,4,1.21,[3,3,2,31);

xtitle('Uniform")

with uniform or Gaussian
distribution. Uniform is the G_fuln=(rand)(1,2000,'n');

- subplot(122);
.defaU|t’ Gau5_5|an (normal) histplot([-4:0.1:4],G_fun,2,'073',' *,[-4,0,4,1.21,[3,3,2,3]);
is selected with the xtitle('Gaussian’)

argument ‘normal’ (or ‘n’)

Unifarm

m To the right are
histograms of 2000
random numbers
generated with uniform
and Gaussian distribution
(the latter with mean O,
variance 1)

A few more functions

(5/5): grand()

// grand_demo.sce

// Plot histograms of Chi-square, exponential, /
// and Poisson distributions with 105 draws /

clear,clc,clf;

Chi=grand(100,1000,'chi',3) // Chi, 3 deg freedom
Exp=grand(100,1000,'exp',3) // Exponential, mean 3
Poi=grand(100,1000,'poi',3) // Poisson, mean 3

x = [0:.1:12];
subplot(131);
histplot(x,Chi,2)
legend(['Chi-square'])

subplot(132);

histplot(x,Exp,5)

subplot(133);
histplot(x,Poi,13)
legend(['Poisson'])

The function grand() is more
versatile than rand(). It allows
most existing distributions to
be generated. Shown here is
an example with Chi-square,
exponential, and Poisson
distribution histograms

— Exponential

PDr.EW l
Johnny Helkell

+
6. Examples, Set 2

Adds to what we have learned
so far

Return to Contents

Example 2-1: solving an
equation system

m The task is to solve the following system of equations:

X, +2X , — X3 =1
22X ; — 6X, +4x 5 =-2
X, — 33X, +3x 5, =1

s We can write it in the matrix form Ax = b, where:

1 2.1 1]
A= 6 4 b= -2
133 i

m Next we set up the equations in Scilab to find the solution x:

+

Ex 2-1: script & solution

The code for the
equation system

as entered in MENSS // Find the solution to x in /
/| AX=Db

Editor and named
algebral.sce.
Note the
Backslash
Operator (\)

The solution:
(X, | -1
X, 2
X3 2

// algebral.sce

A=[12-1;,-2-64;-1-33];
b=1[1;-2;1];

x = A\b

algebral.sce has to be
run from the Console
since the script contains
no disp() command

-->exec algebral.sce

-->[[algebral.sce /
-->//
-->// Find the solution x in /
-->/[AX=Db /
-->//

->A=[12-1;-2-64;-1-33];
-->b =[1;-2; 1];

-->Xx = A\b

X =

- 1.
2.
2.

Ex 2-1: checking the

result

m [Itis good practice to check
one’s solutions

m In this case it can be done by

making sure that the residual
B — Ax is exactly zero

m The altered code is renamed
algebral_check.sce and
saved before being executed

m The result is 0, as hoped for
(note that there is no
rounding error here; the
result is exactly zero)

// algebral.sce

// Find the solution x in /
/| AX =D /

A=[12-1;,-2-64,;-1-33],
b=1[1;-2;1];
X = A\b

// algebral_check.sce /
// Make sure thatb-Ax=0 /

residual = b - A*x

residual =

Ex 2-1: what should have
been done before

+

m In line with what has been said
earlier, we should start by

Problem: The determinant checking that the determinant of
of the coefficient matrix A the c_oeg ﬁlglenglzngtcr'll)ébA ISO "
i nonsingular (ok, Scilab wou
1488 5 e 2E1© have yelled i$ that had been the
case)
) | | | We can test it in hindsight and
>AS[l2-1-2-64;-1-33] see that this is not the case

—->det(A)

When writing a program for
practical applications we must
-2, Include the zero check in the
script. This, however, requires
flow control (conditional
branching) that will be discussed
in Chapter 11

ans =

Example 2-2: solving
currents in a DC circuit

+

Task: Determine the four
currents i1, i2, i3, and i4 1 _i3_ R3=12Q
for the shown DC circuit

4
Loop 3
As drawn, the figure allows) e R2=4Q o
1

Kirchhoff’s voltage law to — AAN AN\N———

be applied. However, the i4l
method leads to a non- E1=5V
square matrix and tools
like the Backslash Operator
(\) and multiplication with
inverse matrices cannot be
applied

-+
~
(o]

(o]
@
P
S
]

0
0
~
(o]
(o]
T
@
+_

E2=3V

Ex 2-2: mesh-currents

‘ Instead, superposition of

E3=4V
currents with mesh- 1 R3 =120
current equations can be [+ NMN—
used. Along the current i3
loops the diagonal term R1 =20 =G
resistances are: — AN

n|=

ANN—
R11 =10 Q
R22 =12 Q) - =5_l_—+ @ R4 =8Q @ —
R33 = 18 O i i

The common (off-
diagonal) resistances are:

N
]
w
<

R12=-8Q,R13=-2Q,R21 =-8Q,R23 =-4Q, R31 =-2 Q,
R32 = -4 Q (You should be able to figure out the logic)

Ex 2-2: solution

+

These values allow us to write the

following mesh-current equations: o
// circuitl.sce

I 10 -8 -2 i_l 1 E- 1 I /] Mesh-current solution for Example 4 /
8 12 -4 1.2 53 R = [10 -8 -2; -8 12 -4; -2 -4 18];
-2 -4 18 1.3 |4 u=[534];

- = - - i_n=R\u
residual = clean(u - R*i_n) // Check

We execute the script in the Console
and compute manually the current

values that we are looking for: 5
2.25
1.'
i1=i1-i3=15A residual =
i2=i2—- | 3=125A 0
i3=i 3 =1A 81

i4=i1-i2=025A

+

Ex 2-2: comments

The example shows that we have to find the right method to
be able to use matrix operations

Is there reason to use matrices, which are the alternatives?

m The first alternative would be to Froceed from the initial
t

diagram and ap Iy Kirchhoff’s voltage law, and solve the
problem manually. It is a quite tedious task

Another alternative is to start manual calculations from the
set of mesh-current equations by using Cramer’s rule.
However, it also requires a good dose of algebra since we
have to compute determinants for several equations before
we can divide the results to find the solutions

In short, using Scilab to manipulate matrices simplifies the
undertaklng With more complicated circuits the difference is
even more pronounced

Example 2-3: continuous-
time state-space model

+
o

m The figure shows a typical a where
continuous-time state-space A = system matrix
model, defined by the matrix B = input matrix
equations C = output matrix
<’ = Ax + Bu D = feedforward matrix
vy = Cx + Du x = state vector
x’ = dx/dt
u = input vector
y = output vector

Ex 2-3: the task

m Assume a system given by:

A= [fos |- e=q1]
c-{o,] o= §]

m The input u is constant at 0.5
m The initial state vector xO = [0 O], i.e.,, x=0att=0

m The task is to plot the output y and state variable responses
(x, x)fort=0...30

Ex 2-3: script

First the state-
space model is

defined \
Note the syslin()
function that

defines a linear
system \
Next, the

responses due to
initial stlate and
external input _
signal u are

simulated using
csim()

To finish, the
responses at
output y and state<
variables x and
x are plotted in
separate windows

// state_space.sce

// Simulates a continuous-time state-space /
// system model /

clear,clc;

A=[0,1;-1,-0.5]; // System matrices

B=[0;1];

C=[1,0];

D=[0];

x0=[0;0]; // Initial state

sys=syslin('c',A,B,C,D,x0); // Create cont.-time ('c') system model
t=[0:0.1:30]; // Time vector

u=0.5*ones(1,length(t)); // Create constant input signal

[y,x]=csim(u,t,sys); // Compute with u=input, y=output, x=states

scf(1); clf; // Open and clear figure 1
plot(t,y); // Plot response iny
xtitle('RESPONSE AT OUTPUT vy','t");
axl=gca(); axl.grid=[2,5]; // Handle: add grid to y-plot
scf(2); clf; // Open and clear figure 2
plot(t,x); // Plot response in x
xtitle('RESPONSE OF STATE VARIABLES','t");
legend('x','dx/dt',1); // Add legend to x-plot
axl=gca(); axl.grid=[2,5]; // Handle: add grid to x-plot

Ex 2-3: plots

RESPONSE AT OUTFUT v RESFONSE OF STATE VARIABLES

Note the use of the function scf(number) (set current figure) to produce
two plots

Ex 2-3: comments (1/3)

+

m Apart from demonstrating matrix operations, this example
introduced a number of new concepts:

definition of a linear system with the syslin() function, in which
the string ‘c’ as input argument denotes “continuous.” The
initial state x0O=[0;0] is not needed since x0=0 is the default

value, but it is there if we want to make changes

Scilab lacks a unit step function; the constant input signal is
constructed with a unit vector (using ones()) of length = t

simulation of the defined system was done by the csim()
function, with u, t, and sys as input arguments

csim() produces the output arguments y and x, which are used
by the plotting commands. Check Help for a detailed explanation

two plots are created since, with this particular system, x and y
would otherwise overlap. x and x’ are plotted automatically

the ax1=gca() and ax1.grid=[2,5] pair of commands tells that
we want a grid with blue vertical and red horizontal lines

Ex 2-3: comments (2/3)

For a linear system, we can use either a transfer function or state-
space representation. Their differences:

Transfer function State-space
External description Internal description
Input/Output descriptions State descriptions
Frequency response method Time response method
Laplace transform Matrix
Some internal couplings are hidden State variables are shown
System representation becomes mpre Representation with more
compact with fewer parameters parameters
Single input / Single output Multiple input / Multiple output

In common are block diagrams and their manipulations, poles and zeros

Ex 2-3: comments (3/3)
+

m [t is possible to shift between transfer functions and state-
space representation:

— tf2ss(), transfer function to state-space
— ss2tf(), state-space to transfer function

m These functions are needed e.g. when discretizing continuous-
time models, for which Scilab has the function dscr() but
which is valid only for state-space models

m See tutorial by Haugen, section 9.6, for a brief discussion. A
detailed discussion is given in the obsolete Signal Processing
With Scilab, sections 1.5, 1.7, and 2.1 ()/ou can access both
through <http://wiki.scilab.org/ 7utorials>)

f

+

Example 2-4: string

This example relates to
the discussion on strings
in Chapter 5

String as input()
argument

The if...else...end
construct will be
discussed in Chapter 11

Note interplay between
floor() and modulo()

Strings as disp()
arguments

unctions, script

// conv_seconds.sce

// The script asks for a number of seconds,
// checks that the given number is positive,
// then converts the number into hours,

// minutes, and seconds

clear,clc;

time = input("Give time in seconds: ");

if time < 0 // Check if time >=0
disp("ERROR, negative number") // Display error message
abort // and abort execution

else
minut = floor(time/60); // Convert to minutes
seconds = modulo(time,60); // Remaining seconds
hours = floor(minut/60); // Convert to hours
minutes = modulo(minut,60); // Remaining minutes
disp(string(hours)+" hour(s) "... // Display answer
+string(minutes)+" minute(s) ...
+string(seconds)+" second(s) ")

end

+

Ex 2-4: string functions,
execution & comments

Below is the result of
three different runs

Give time in seconds: 0

0 hour(s) 0 minute(s) 0 second(s)

Give time in seconds: -3600

ERROR, negative number

Give time in seconds: 7465.33

2 hour(s) 4 minute(s) 25.33 second(s)

In the script, the initial cleaning
command is clear,clc;. If clf was
included it would cause the Graphics
Window to pop up unnecessarily (in
Ex 2-3 it would have produced an
extra empty window)

In this example we for the first time
use a sanity check (if time < 0 ...) to
make certain that the user does not
cause problems by wrong inputs

In a case like this it is irritating that
the Console does not become active
after the execution command is given
on the Editor. You automatically begin
to type in the response once the
string command pops up, but the
cursor is still on the Editor...

PDr.EW I
Johnny Helkell

7. Graphics & plotting

2D & 3D plots, subplots & other
types of plots; editing plots (@

Return to Contents

The Graphics Window
+

Note: The Demonstration =+ Graphic window number 2
feature has a good presentation
of plotting functions, but it also
contains obsolete ones

m The toolbar allows rotation and
Z00Mm Of d pIOt Select as current figure

m Of real interest is Edit in the menu bar, Redraw figure

and the Figure properties and Axes LT
properties, that are shown when clicking Figure properties
on Edlt Axes properties
m However, Figure properties is Start entity picker
ambiguous, all options can be found Stop entity picker

undel‘ Axes pl"Opel"tieS Start datatip manager

Stop datatip manager

getcolor()

‘ m When working with graphics | @ Graphic window number 1
you may want to check which Ok Cancel
colors are available in Scilab
and which their codes or
names are

m Scilab’s color palette can be
brought up by entering the —»
command getcolor() on the
Console

m By clicking on a color in the
palette its number, RGB
composition, and name are
displayed at the bottom of
the WindOW (SCIIab 5.3.X N ‘olor number 34: R=190 G=190 B=190 Name="gray"
does not display the last two, :

33 “green” and 34 “grey”).*

*) I miss more light colors for use as
plot backgrounds.

Plot function demos

+

m You get a demo of certain plot
functions by entering the
function name on the Console.
Examples:

el

— grayplot() —
— errbar() =
— plot3d0)
fplot3d10)

Axes Editor
+

778 Axes Editor
Graphic Editor

Objects Browser Object Properties

~ | Figure(1)
ot

| r Compound(1) Label Options
f

The most useful
editing objects are
Axes() and
Polyline(). Here
the Axes window is
open

& Polyline(1)

Font sizelcolor:

There are seven
object properties
that can be played
with, the one for
the x-axis is shown

Axis Options

Scale:

Reverse:

;{
4| b

o o |

= ‘fl Y I .'.tl Title

Text: ™
Visibility:
Auto position:
Auto rotation:

Font angle: &

Fore/Back colors:

Font style:

Location:
Grid color:

Data bounds:

[+ on Fill mode: [

W on Position: [1,1]
v on

ol A ¢ Ll s 1=y R i

-1
||

;
=

SansSerif

pottom
-1

1

k|

o Lin.

-

" Log:

Chuit i

-

Plot editing demo,
starting point

+

-->t=(-2*%pi:0.01:2*%pi)";

‘-4. Graphic window nu ">IO|0t2d(t,[Sin(t),cos(t)])
14 . File Tools Edit %
m Let’s start by plotting a T Gl e
sine and cosine curve on e S
the same frame

m The resulting plot is not
very sexy

m S0 let's do some editing to
give it a more attractive
appearance

m Start by clicking
Edit\Axes properties

Plot editing demo,
edited plot

m To change sine and cosine
colors, Click: Figure SINE AND COSINE
object\Colormap, mark a TN T
one (1) for: 1 RED, 2 BLUE = ’

m Sine/cosine style: Axes\
Compound\Polyline, select
Line solid 3 for both

m X/y axes: Axes\Text “X/y
axis”, File mode on, Fore
color 13, Font size 3, Axis
location middle, Grid color
13

m Title: Text "SINE AND
COSINE”, Font size 3, m Style: Font size 2 (Axes labels)
Font Color 13

|

Editing the Graphics
Window

+

m The Figure Editor allows us to give the Graphics Editor a more
colorful appearance. Play for a while with the Editor’s object
properties and you can find e.g. the following alternatives:

Graphics Window
commands

+

The command for creating a
new Graphics Window for
plots is:*

scf ()
for figures:
show_window ()
and the obsolete:**

xset ()

m Windows-related clear/

delete commands are e.g.:

clf ()
xdel ()
delete()

obsolete are:

xclear ()
xselect ()

xbasc () (Removed)

*) Single plots can be created
without the scf() command.

**) Obsolete functionsan be seer
In most Scilab tutorials, but they
should be avoided

Scilab commands starting with
x are usually associated with
Graphics Window. The history
of the x goes back to the X
window system in Unix

Why plot() and plot2d()?

‘ m Both plot() and plot2d() create 2D plots

plot() is borrowed from Matlab. Persons with Matlab experience may
want to use it (and frankly, the benefits of plot2d() are doubtful)

m Scilab has the added plot2d() function. It offers more options to
tailor the plot. Multiple plots, for instance (recall however that
multiple plots were done with plot() in Ex 1-2):

// multiple_plot.sce

// Demonstrates one alternative offered /
// by the plot2d() function /

clear,clc,clf;

X = [0:0.01:2*%pi]’;
plot2d(x,[sin(x) sin(2/x) sin(3*x)],rect=[0,0,6,1])
legend('sin(x)','sin(2x)'",'sin(3*x)")

Note: plot2d() hag

plot2d(): syntax | zwasisy

different old syntax

m The plot2d() syntax can be used as a guide for some other plot
commands, e.g. for fplot2d(and histplot()

m plot2d() has the following arguments:

plot2d(logflag,x,y,optional arguments)

m x and y can be either vectors or matrices but with different
outcomes for the plot. logflag is used only with logarithmic plots,
we'll se it in a demo later

m The set of optional arguments is:
style, strf, leg, rect, nax Axes label and tick

e .
/ \ definitions (vector)
Graph style Minimum bounds for

numeric :
() Legend (string, the plot (vector: [xmin,

Control of display captions often seen ymin, xmax, ymax])
(by default "081") empty ("))

plot2d(): syntax demo
+

m linspace() is not accepted here
// plot2d_demo.sce

m style = 5 produces a red graph
clear,clc,clf;

x = 0:0.1:2%¥%pi; // x axis definition m legisempty (') in sine plot
y1 = sin(x); // Function 1

v2 = cos(x);) Function 2 m style=—9 produces circle marks

stylel = 5; /) vstyle” for sin = A legend is added to the figure
strfl = '174' // "strf” with the second plot command
rect = [0,-1.2,2*%%pi,1.2]; // "rect”
nax = [4,%pi,4,7]; // "nax’,
plot2d(x,y1,stylel,strf1,' ', rect,nax)

style2 = -9; // "style” for cos
strf2 = '000’; // No axes changes
leg = ‘sin@cos’; // Legend definition
plot2d(x,y2,style2,strf2,leq)

Scilab may not accept the legend
command as it has done here (bug?)

plot2d(): multiple plots

m The DFEViOUS slide showed how // Multiple graph declarations in a single /
to create multiple graphs in a // plotea) command /
single window with two

clear,clc,clf();
separate plot2d() commands

x=[0:0.1:2*%pi]’;

i plot2d(x,[sin(x) cos(2*x) sin(3*x-%pi/2)],...
= Multiple graphs can be declared BE5. 1/ Gt colors
in a single plot2d() statement leg="sin(x)@cos(x)@sin(3x)",... // Legend

using a vector argument nax=[3,6,2,5],-.. // Ticks & marks
rect=[0,-1.5,2*%pi,1.5]); //Axes

m The case shown here also
differs from the previous one
by having argument
declarations 'in situ’

m Scilab does not properly adjust
the plot to the window; only

the first legend shows \

sin(x)

plot2d(): style codes

+

We have several times come across number codes for graph colors
(style, the number after the x and y arguments in plot2d())

Color codes are those that can be found with the getcolor()
command on the Console. The most important ones are 1=black,
2=Dblue (9=dark blue), 3=green (13=dark green), 5=red, 8=white,
and 25=brown

On the previous slide we saw that the code -9 creates circles. Plug
in getmark() on the Console to see the whole list, including codes
for mark sizes that you can use with handle commands. There are in
all 15 of these marks (always black):

-1(-2(3|4|-5|-6|-7|-8|-9|-10-11|-12|-13]|-14

T IX D ¢|O|A|VIE| O]k > | <1 5%

plot2d(): demo with
matrices

The simple script below demonstrates the
plot2d() command when arguments x and
y are matrices, and the style is 1 and -1

scf() is used to

open a new

GraphiCS ->x=[.5.7.91.31.71.8];
WindOV_l. >y=[1.2.75152.12.4]"
Otherwise the +

marks Of the -->plot2d(x,y, style=1)
second plot2d() _>scf();

command would

be on tOp Of the -->plot2d(x,y, style=-1)
first one

The command is clearer if arguments are
written in plain (style=-1) but, a shown in
earlier demos, the number alone is enough

fplot2d()

m fplot2d() is a variant of plot2d()

s With fplOtZd() a function and its -->fplot2d(linspace(-10,10,100),sinc,style=5)
definitions can be included in the
arguments

m The general form of fplot2d() is:
fplot2d(x,f,opt arguments)

m The demo to the right shows a
case where

— X = linspace(-10,10,100)
— f = Scilab’s in-built sinc function
— style=5 is an optional argument

m Thereis also a 3D alternative,
fplot3d()

plot(): the beauty of
simplicity (1/2)

s Matlab/Scilab’s plot() function* J/ plot(). demo.sce

offers a simpler way to distinguish

between multiple plots than does 7 e O PR S

plot2d(). It is by using keyboard aif();

characters, the way it was done

i t=0:0.1:2*%pi;
on teleprinters half a century ago il 1/ Plot with ‘"
. t,cos(t),'x’, .. // Plot with x’

m Here three graphs are pIOtted with t abs(sin(t+%pi/4)),'<") // Plot with '<’

one plot() command. The style
definitions are '0’, 'x,' and '<.' Note
that t is repeated for each graph

m It can be seen that '<' (red) gives

a triangle that points in the
direction of the path of the line

*) Scilab’s plot() function does not
support all properties of its Matlab
counterpart

plot(): the beauty of
simplicity (2/2)

The following list contains main line style codes for plot():

. Solid line (default) | x Cross
o Dashedine 'square' or 's' Square
Dotted line ‘diamond’ or 'd' | Diamond
- . Dashdottedline A Upwardpointing triangle
+ Plus sign Y Downwardpointing triangle
0 Circle > Right-pointing triangle
* Asterisk < Left-pointing triangle
Point '‘pentagram’ Five-armed star

Color arguments are: k — Black, w — White, r - Red, g - Green, b — Blue,
c — Cyan, m — Magenta, y — Yellow (the letter should be in front of the
style code, inside single or double quotes, e.g. 'r+')

+

3D graphs: plot3d()

The syntax of plot3d() is quite similar to that of plot2d(). In
addition to the mandatory Xx,y,z arguments, the plot 3d() function
can—among other possibilities—have following arguments:

plot3d(x,y,z,theta,alpha,leg,flag,ebox)
Check with Help for an explanation

Below we'll plot a 3D graph of the sinc function sin(x)/x, using
some of the surface definition capabilities of plot3d()

Scilab defines only the 2D sinc(x) function so to shift to 3D we will
apply the expression

r=\(x%-y?)

Of the above mentioned arguments we'll use leg=“"X@Y@Z"” to
label x,y, and z axes and flag=[mode,type,box] to define surface
color, scaling and frame of the plot

3D graphs: plot3d(),
script & plot for 3D sinc()

Pay attention to [X,Y] = ndgrid(x,y) WEEp e
& use of the Dot Operator in Z _ o ,

// Plot the sinc function (sin(x)/x) using plot3d() /
// with surface definition arguments /

clear,clc,clf;

X = linspace(-10,10,50);

y = linspace(-10,10,50);

[X,Y] = ndgrid(x,y); /[Create array for xy grid
Z = 50*sin(sqrt(X.~2 + Y.A2))./sqrt(X. "2 + Y. 2);
plot3d(x,y,Z,leg="X@Y@Z",flag=[4,2,4])

Change plot3d() for plot3d10)
to get a different texture

A different approach to this
task is shown in Example 3-5.
There is a bug in the script
given in Help/meshgrid

3D graphs: surf(),

task & script
+

m Write a script that plots the function
7z = (2*%x2 — y2)exp(—=x2 — 0.5*y2),
where-2<x<2and -3<y<3

m The function linspace(a,b,m)

creates linearly spaced x and y /f surf_ex1.sce
row vectors (“from a to b with m 1/ Plot the function
equal increments”) /] 2=(2x2 - yA2)exp(-x~2 - 0.5y"2)
. // for -2<x<2, -3<y<3, where < indicates
| Usmg vect_ors X and Y, the [X,Y] // "less than or equal to"
= meshgrid(x,y) command
creates a 2D matrix in the xy- clear,clc,clf; _ _
| ane x=I!nspace(—2,2,30); // Linear spacing
P y=linspace(-3,3,30);
» Generate Z-values for each sl G e
element of the 2D matrix Surf(X,Y,2) /1 Plot 3D surface

m Plot the resulting 3D function

3D plots: surf(), plot
+

Aint that cute!

The colors may not be
all that great but they
can be changed with
handle commands.
This will be shown in
Example 3-5

surf() has a parallel
form called mesh()
that is used in the

same way as surf()
but it lacks shading

If you click on the display button for surf() in the Help Browser, Scilab
first displays a number of alternatives and then crashes.

Contour plots: contour()

+

m Let's return to the expression z = (2+x2 — y2)exp(-x2 — 0.5%y?),
and plot its 2D contour (level/height curves)

m It only requires the script’s plot command to be changed

// contour.sce

// Plot the 2D height curves for the /
// function /
/] z=(2x"2 - yN2)exp(-x"2 - 0.5y"2) /
// for -2<x<2, -3<y<3, where < indicates /

// "less than or equal to" /

clear,clc,clf;

x=linspace(-2,2,30);

y=linspace(-3,3,30);

[X,Y]=meshgrid(x,y);

Z=(2*X ND-Y N2). *exp(-X.~2-0.5%Y.12);
<l contour(x,y,Z,10)

Vector fields: champ()
+

m The 2D vector field for the expression z = (2%x2 — y2)exp(-x2 —
0.5*y2) can be visualized by changing the plot expression to
champ(), and adjusting the intervals in the linspace() functions:

// vector_field.sce

// Plot the 2D vector fields for the function /
/] z=(2x"2 - yN2)exp(-x"2 - 0.5y"2) /
// for -2<x<2, -3<y<3, where < indicates /

// "less than or equal to" /

clear,clc,clf;

x=linspace(-2,2,10);

y=linspace(-3,310),

[X,Y]=meshgrid(x.y);

7=2XNA2-X N 2) *exp(-X.~2-0.5*%Y.12);
& champ(x,yX,Y)

Mixed contours and
vector fields

+

m Vector fields are not very informative per se, but the situation
improves when they are fused with contours

m In the previous case, just insert the champ() and contour()
commands into the same script and you get them in one plot:

// contour-vector.sce

// Plot the combined contour and vector
// fields for the function
/] z=(2x"2 - y~2)exp(-x2 - 0.5y"2),

/] for -2<=x<=2, -3<=y<=3

clf;

x=linspace(-2,2,15);

y=linspace(-3,3,15);

[X,Y]=meshgrid{x.y);

2= 2Y02) Fexp(-X. A 2-0.5%Y.12);
‘ champ(x,y,X,Y)

contour(x,y,Z,10)

Cutting a 3D surface

+

m We can see the outline of the 3D surface z = (2*x2 — y2)exp(-x2 -
0.5*y2) at a certain plane by defining the plane in case (below y =
-1) and by returning to 2D plotting:

// cutting.sce

// Cut the the function
/] 2=(2*x"N2 - yN2)exp(-x"2 - 0.5*%y"2)
// along the planey = -1

clf;

x=linspace(-2.2.50);

y=linspace(-1,-1,0);

[X,Y]=meshgrit(X,y);

2=(2* X N2-Y . N2).*exp(-X.~2-0.5*%Y."2);
& plot2d(X,Z,5)

Mixed 2D /3D plots (1/2):
script

+

Scilab has its own ideas of what it should do if a contour() command
is added to the script of a 3D plot command (plot3d(), surf()). Trial
and error is needed

Question: Should contour()
come before or after

// plot3d-contour.sce

DlOth()? Z E::otthtel'fuﬁg?gr;ned 3D graph and contour ;
Answer: Scilab accepts /[2=(2x"2 - y"2)exp(x~2 - 0.5y"2), [
both alternatives, but with | R A /
dramatically different cIe?r,cIc,cIf;

results y-inepace(-33,30),

Only the first flag|] [X,Y]=meshgrid(x,y);

Z=(2*¥X.N2-Y.N2). *exp(-X.~2-0.5%Y.~2); [/ Same as before
arg_ument Of COHtOLll’() has contour(x,y,Z,10,flag=[0,0,0]); /] First flag[] argument
an influence on the p|0t plot3d(x,y,Z,theta=60,alpha=80); // Turn 60 and 80 deg

Mixed 2D /3D plots (2/2):

lot
JrP

The surface looks
different from when it
was plotted using surf().
The reason is that the x
and y axes are inverted
compared with the earlier
case

No point in denying, there
remains unsolved issues
regarding the behavior of
Scilab in this case

3D plot with hole
+

The %nan function allows certain z values to be excluded from a 3D
plot:

// hole.sce

// 3D surface with a hole punched /
// into it with the %nan command /
// (z values not to be represented) /

clear,clc,clf;

function z = f(x, y)
Z=2*X"N2+y"2,;
endfunction

X = linspace(-1,1,50);
y = linspace(-2,2,100);

z = (feval(x,y,f))"; // Evaluate function s N . 7, .
2(75:90,20:35) = %nan; // Definition of hole There is "Polish logic” behind

surf(x,y,z) // Plot surface the z arguments that asks for
trial & error to get it right

subplot()
+

m Subplots are a way of presenting multiple graphs on a single frame

m The function subplot(m,n,p), or (mnp), splits the Graphics Window
into m rows and n columns, and the subplot in case occupies
position p. In the case of four subwindows, subplot(22p), the
position of p is as shown:

m We'll do it for the z = (2xx2 — y2)exp(—x2 — 0.5*y?), by fusing the
four earlier cases into a single frame

subplot(): demo script

+

// subplot.sce

// Presents different aspects of

// the function

/] z=(2x"2 - yN2)exp(-x"2 - 0.5y"2)
// in four subplots

clear,clc,clf;
x=linspace(-2,2,30);

y=linspace(-3,3,30);
[X,Y]=meshgrid(x,y);

Z=(2*X.N2-Y."2). *exp(-X.~2-0.5*%Y."2);
subplot(221)

surf(X,Y,2)

subplot(222)
contour(x,y,Z,10)

x=linspace(-2,2,10);

y=linspace(-3,3,10);
[X,Y]=meshgrid(x,y);

Z=(2*X.N2-Y.~2). *exp(-X.~2-0.5*%Y.12);
subplot(223)

champ(x,y,X;Y)

x=linspace(-2,2,50);

y=linspace(-1,1,0);

[X,Y]=meshgrid(x,y);

Z=(2*X.N2-Y.N2). *exp(-X.~2-0.5*Y.12);
subplot(224)

plot2d(X,Z,5)

Note that only the plot function

has been repeated for (222)

subplot(): demo plot
|

There is
another
function for
subplots:
xsetech().
Check with
Help for
details

20 45 1.0 05 00 05 10 15

o 05 00 o5 10 1458 20

plot2d2(), plot2d3(),

+plot2d4(): demo, script

// plot2dx.sce

; // Demonstration of the basic sinc function plotted /
m The plot2d() function has // with plot2d(), plot2d2(), plot2d3(), and plot2d4() /

three variants:

clear,clc,clf;
m plot2d2() for step functions x = linspace(-10,10,50);
m plot2d3() for vertical bars subplot(221); _ _
pIQtZd(x,smc(x),ster=5) // Plot continuous line
m plot2d4() for arrow style lines xtitie(plotod’)
subplot(222);
m The effect of these plott plot2d2(x,sinc(x),style=2) // Plot with steps
commands on the sinc() xtitle('plot2d2')
function is shown on the next subplot(223):
slide plot2d3(x,sinc(x),style=2) // Plot vertical bars

xtitle('plot2d3")

subplot(224);
plot2d4(x,sinc(x),style=2) // Plot arrow style
xtitle('plot2d4")

plot2d2(), plot2d3(),

Jrplot2d4(): demo, plot

Note: You
can still see
the obsolete
plot2d1() in
manuals.
plot2d()
should be .
used instead

(In contrast,

plot3d1() is

not declared Al |‘ ‘| i,
obsolete) il ||H||

+

Histograms: functions to
create them with

Histograms are graphical presentation—typically rectangles—

of one-dimensional data

Scilab’s main function for plotting histograms is:
histplot(x,data,opt_arguments)

Bar diagrams, a common form of histograms, are given by:
bar(x,y,width,color,style)

or, for horizontal bars:
barh(x,y,width,color,style)

3-dimensional bar diagrams can be created by the command:
hist3d(z,opt_arguments)

and with added x and y vectors:
hist3d(list(z,x,y),opt_arguments)

Check Help for more details

Histograms: demo, script

+

The script(s) below are intended to demonstrate different
types of histograms, presented as (22p) subplots

// histogram_subplot.sce

// Demonstration of histogram types /
// using subplots /

clear,clc,clf;
subplot(221)

data=rand(1,10000,'normal’);

histplot(20,data) // Traditional histogram
subplot(222)

y=[13568];

z=[y;43221]; // Transpose necessary!
bar(z,0.7,'stacked") // “on top of each other”

subplot(223)
hist3d(5*rand(8,4)) // 3D histogram

subplot(224)
z=10*rand(3,4);
x=[1356];
y=[127 11 20];
hist3d(list(z,x,y))

The list() argument defines the
distribution of random z values
over the x,y plane

// 3D hist, add x/y vectors

Histograms: demo, plot

Old graphics syntax
Jr(1 [2): demo, script

// multiple_plots2.sce

Scilab’s graphics
SyntaX Changed with // Demonstration of a method for producing /

; y // three plots y1=f(x1), y2=f(x2),y3=f(x3) /
version 3.1. This // in the same frame. Note how the frame /
demo shows the old AR /
plot2d() syntax for e

. clear,clc,clf;
a case with three X1 = linepace(0,1.61);
p|OtS, x2 = linspace(0,1,31);

x3 = linspace(0.1,0.9,12);
WA GO ICIME 1 = x1.%(1-x1).*cos(2*%pi*x1); /] First graph
= y2 = x2.%(1-x2); // Second graph
clle yS f(XS)’ y3 = x3.*(1-x3) + 0.1*(rand(x3)-0.5); // Third, as y2 with disturbance

in the same frame ymin = min([y1,y2,y3]); // Select minimum to define frame bottom

Note the frame ymax = max([yl,y2,y3]); // Select maximum to define frame top
. - dy = (ymax - ymin)*0.1; // Border for min/max
defInItIOn and rect = [0,ymin - dy,1,ymax+dy]; // Frame limits, startat 0
compare silitn. e lot2d(x1,y1,5,"011"," ", rect) /] First call with f definiti
; plot2d(x1,y1,5, S rec irst call with frame definitions
method used in plot2d(x2,y2,2,"000") /] Second call, only type/color (2) definition
Example 1-2 plot2d(x3,y3,-1,"000") // Third call, defines marks(-1)

xtitle("THREE GRAPHS PLOTTED IN THE SAME FRAME","Abscissa","Ordinate")

Old graphics syntax

+(2/ 2): demo, plot

Rotation surfaces

+

The rotation

// rotation_surface.sce

// Plot the rotation surface created by /

surface is // the function y=2+sin(x) as it rotates /
created by // around the x-axis /
muItipIying clear,clc,clf;

the o_rlglnal // Define function to rotate:
function, [

WhiCh is x=-10:.01:10;

. subplot(211)
(e[Sl B plot2d(x,2+sin(x),5,rect=[-6.5,0,9,3])

2+sin(T), by

// Rotate 2+sin(x) around y-axis:

AsindPIHD | e

and t=linspace(-6.5,9,60);
phi=linspace(0,2*%pi,60);

.*COS(PHD [T,PHI]=meshgrid(t,phi); // Create mesh

X=T,
\ Y=(2+sin(T)).*sin(PHI);
Z=(2+sin(T)).*cos(PHI);

subplot(212)
surf(X,Y,Z)

Logarithmic scale:

th

ask & script

Plot the Bode diagram for the
function

G(s) = Uy

(s-10)(s-90)

where s = iw and the angular
frequency w = 0.1 ... 1000

Note double dots 100../(s- _»
10) in the G command. First

dot is a decimal point, then
comes the Dot Operator

Put the logarithmic w-axis

// log_plot.sce

// Plot the Bode diagram for the function /
// G(s) = 100/((s-10)(s-90)). Use the normal /
// logarithmic x-axis and decibel scale on /
// the y-axis /

clear,clc,clf;
// Define log scale for w
// Define imaginary s

w = logspace(-1,3,100);
s = %i*w;
G = 100../((s-10).*(s-90)); // Define G(s)

y = 20*log10(abs(G)); // Define dB scale for y

plot2d(w,y,5,logflag='In") // Plot y=f(w)

xtitle("Bode plot for G(s)=100/((s-10)(s-90))","w,...
log scale","y, dB scale")

xgrid() // Add grid

horizontally and the decibel
scale y=20(|G(wi)|) vertically

logspace(-1,3,100) = “from 10! to
103 in 100 logarithmically spaced
increments”

+

Logarithmic scale:

the plot

Bode plot for G(s)=100/((s-10)(s-90))

The graph has been
edited after plotting

We have not before
mentioned the argument
logflag ‘In’ in plot2d().
Change ‘In’ to ‘nn’ (11" is
not possible here) and see
how the plot changes
(n=normal, I=logarithmic)

Note: Scilab has a special
function for Bode plots,
bode(). See Example 3-1

Polar coordinates

//cardioid.sce

// The script plots the cardioid /

m Polar coordinates are used /I v = 1- cos(x), for x = 0...2pi /
frequently in some areas of clear.clccif:
engineering, e.g. to present X = 0:0.07:2*%pi;
antenna lobe diagrams polarplot(x, 1-cos(x),style=[-3])

legend('y = 1-cos(x)',4)
m Plotting in polar coordinates is
done by the command
polarplot()

m The demo shows the simple
script for a cardioid,
y = 1-cos(x), and its plot

I N T R 1 L _1__.
B = Y | | 0

m Note the markers related to
the style= [-3] argument

. o ::EE].\.'-\ f\“.-.-.'::::.:: -
m The plot has been edited, PDaghood?

which is time consuming for
polar plots

Exporting plots
+

m Scilab plots can be exported in various picture formats (PNG, SVG,
GIF, Bitmap, etc.) for use in documents

m To export, Click File/Export to... in the Graphics Window and
select the target file as well as the wished format

= An alternative way is to use the xs2*() function which for PNG
takes the form

xs2png(window_number, file_name);

m The following vectorial and bitmap formats are possible:

% ~~_

xs2png() export to PNG xs2fig() export to FIG
xs2pdf() export to PDF xs2gif() export to GIF
xs2svg() export to SVG xs2jpg() export to JPG
xs2eps() export to EPS xs2bmp() export to BMP
xs2ps() export to Postscript xsZ2ppm() export to PPM
xs2emf() export to EMF (Windows)

Handles (1/12):
introduction*

m Handles are a thorny subject to Scilab newbies. Existing texts give
only an incoherent treatment of the topic. The user is left with the
option “try and cry”

m We shall limit this discussion to the most essential handle properties,
aiming at gaining a basic understanding of how plots are edited with
handles

m It may help to view handles as an alternative to the Figure Editor
that we already have used. The idea is the same in both

m The Help Browser discusses the subject under the heading
graphics_entites. Check also object_editor

*) Recall the introduction to handles in ChapteHandles were already used
iIn Example 2-3and when discussimaplylines This discussion is based on
Kubitzki: Grafik, Eigenschaften verwalten in Scilab, section 2.4.3 in
Champbell et al., and Steélcilab Graphics, 2007.

Handles (2/12):
introduction*

m The Graphics Window is built as a hierarchy of objects. See the
hierarchic tree presented on the next slide, which also gives typical
commands for each entity

m The topmost object in the window is called Figure. We use the
function gcf() , get current figure, to influence the window as it pops
up on the screen. This is done with the handle f = gcf()

m Figure has a child called Axes, which in turn has several children, and
these again may have own children. Axes is called by the function
gcal), get current axes. The handle in case is a = gca(), but the
alternative a = f.children also works

m Pay attention to Compound, which has the important children Label
and Polyline. The latter refers to the actual graph that we plot

m Figure can have other children beside Axes. These are created by
Scilab when we use certain commands

Handles (3/12): basic
graphics hierarchy sicreorne

Graphics Editor’s
Object Browser

h = gcf(); // Get figure handle that we have used
to edit plots

- a = gca(); // Get axes handle or
Axes a = h.children;

x = a.x_label // Get x_label handle

v = a.y_label // Get y_label handle
z = a.z_label // Get z_label handle (3D graphics)
t = a.title // Get title handle

oolselllisll C = a.children // Get compound handle

[elShlel leg = c.children(1) // Get legend handle (if any)

pol = c.children(2) // Get polyline handle
(first graph in plot)

Handles (4/12): demo,
starting point

As a first exercise, let’s start from the script that was used in the
introduction to handles in Chapter 2:

+

// handles _demol.sce

// Basic script to demonstrate handles /

x = linspace(0, 4*%pi, 100);
plot2d(x, 0.5*cos(x))

Lessons learned:

1) You have to be systematic when working with handles
2) The existing literature is not always correct. For instance, the

method suggested by Steer for changing axes ticks & marks simply
does not work (took me hours to figure out)

Handles (5/12): demo,
behind the scene

+

-->
ans v When we call up the Axes

handle on the Console, it turns
“ out to be really long. On the top
parent: Figure of the list we find that Axes has
children: "Compound* a Chl|d, Compound

Handle of type "Axes" with properties:

A check with gce() reveals el
that Compound in turn has a _ _
Ch”d, PonIine. ThiS matches Handle of type "Compound" with properties:
the hierarchy that we have parent: Axes
seen on the Figure Editor children: "Polyline”

visible = "on"
user_data = []

Handles (6/12): demo,

step 1
+

We first define some changes 15 cosine
to the window:

- Adjust the window size
- Add background color
- Give the window a name

// handles demol.sce

// Basic script to demonstrate handles /

clear,clc,clf;

x = linspace(0, 4*%pi, 100);
plot2d(x, 0.5*cos(x))

f=gcf(); // Get Figure (window) handle

f.figure_size = [500,400]; // Adjust window size .
f.background = 12; /7 Add background color Check for details under

f.figure_name= "cosine"; // Name window figure_properties in
the Help Browser

Handles (7/12): demo,

step 2
+In this step we

- Move along the hierarchy ladder a=gca(); // Get Axes handle
- Edit the p|0t a.background = 9; // Change background

_ _ c=a.children; // Get compound handle
o)V Te el ale RugleISRITaISISR (o o QY 11 =C.children; // Get polyline (plot) handle

: pl.foreground = 8; // Change line color
SCI’IPt; (YOU Can bypass the E 1 pl.line_style = 7; // Change line style
definition stage and write pl.thickness = 3; // Line thickness

c.children.foreground ... etc.)

Note that we move down the
hierarchy ladder: Figure ->
Axes -> Compound -> Polyline

Check for details under
polyline_properties in
the Help Browser

Change pl.line_style to
pl.polyline_style to get a
different plot

Handles (8/12): demo,

step 3

Handle of type "Axes" with properties:

As shown earlier, the Entity handle parent: Figure
was quite empty. We need to add children: "Compound”
labels that can be edited. For that Aot i T
we add the following command to axes, visible = ["on” "on” "on"]
the script; axes_reverse = ["off","off","off"]
grid = [-1,-1]
. ; , grid_position = "background”
xtitle("COSINE PLOT’,... x_location = "bottom*
‘X—axis’ ’Y—axis’); y_location = "left"
’ title: "Label*
] X_label: "Label"
And now the Entity handle has y_label: "Label*
undergone a dramatic change (this 2_label: "Label

. N . auto_ticks =["on","on","on"]

is only the beginning of the list) gl x ticks locations = [0:2:4:6:8:10;12;14]
y_ticks.locations = matrix 11x1
z_ticks.locations = []
x_ticks.labels = ['0";"2";"4";"6";"8";"10";"12";"14"]
y_ticks.labels = matrix 11x1
z_ticks.labels =]

Handles (9/12): demo,
step 4

‘ xtitle('COSINE PLOT',... // Add title & labels
Title and axis labels have been X-axis','Y-axis');

) - t=a.title; // Get title handle
added, the next step is to edit t.font_style = 5; // Times bold, italic
them t.font_size = 3; // Increase font size

xL=a.x_label; // Get x_label handl/e
In each case we must first call / XL-;Ont—StY'e =5) uaBEslally i
- - xL.font_size = 2; // Increase font size
th_e respective handle (OI’ skip e YL=2.y_label; // Get y_label handle
this stage by writing Edltlng yL.font_style = 5; // Times bold, italic
Commands in the form yL.font_size = 2; // Increase font size
a.title.font_style ... etc.), then

edit the handle properties . COSINE PLOT

Check for details under
label_properties in
the Help Browser

The plot isn't exactly a beauty,
but we'll add a grid and edit
axes ticks & marks

Handles (10/12): demo,

step 5
+

Add grid . \qrid(5); // Add grid

O N CREEVIR I CREQNEIGCNNG // Change x/y ticks & marks:
a.x_ticks = tlist(['ticks','locations’,'labels'], ...

Change y-axis ticks & marks [0,%pi, 2*%pi, 3*%pi, 4*%pi, 14],...
[IOIIIpilllz*pi3l’l3*pil,l4*pilll14[]);
Final plOt: a.y_ticks = tlist(['ticks','locations','labels'], ...

[-0.5,-0.25,0,0.25,0.5],...
['-0.5','-0.25','0’,'0.25','0.5']);
COSINE PLOT

Note: There were
problems with ticks &
marks. Only the
presented syntax
worked

Handles (11/12):
comments (1/2)

m With handles we must observe the order of Scilab commands. For

instance, a script of the following type causes an error message from
Scilab:

+

at line 6 of function %h_get called by :

. . atline 16 of function generic_i_h called by :

a_gca()’ at-) 2-of-farction-9%s—i-h_called by :

a.chﬂdren(l).foreground:5; ‘ children(1).foreground = 5; // Sum_pattern re
at ine—068 uiexeciie called by :

""" opulse_a-pattern.sce', -1

+ v o
2 nmic

m The error message confuses by referring to a submatrix

m The real reason is that we try to change the color of the plotted
graph after the legend was declared. Scilab cannot jump back to the
legend and change it. The legend command has to come after
related handle declarations. But there exceptions....

Handles (12/12):
comments (2/2)

+

s Handle commands are valid only _ ‘—error 999
. . . This object has no auto_clear property.
SpeCIfIC |€V€|S (Flgure, AXES, Entlty/ at line 4 of function generic_i_h called by :
etc.). Help/axes_properties gives e BIET e Lhekd byt
. e2.auto_clear = "on";at line
some hints but mOStly you try & 71 of exec file called by :

cry and get error messages el €xamples\planet_moonl.sce', -1

m Scilab has a hidden agenda when it comes to handles. For instance,
the polyline numbering works in quite strange ways...

m Visual edition with handles undoubtedly improves the look of a
figure, but is the method an “overkill?” The amount of code needed
to edit the plot can be larger that used to create the actual plot

m We should consider that time = money. The important thing is to
come up with a script that is “fit for purpose.” The rest is luxury

m Itis possible to change Scilab’s default settings, but information on
the subject is hard to come by (Kubitzki discusses it briefly)

Polylines (1/3): xpoly(),
script

+

m This is an attempt to see how
well we can work without

. . // Xpoly.sce
ordinary plot functions s
_ // Attempt to plot a hexagon with xpoly() & edit /
m Compare with the xpoly() // with handles. Causes erroneous behavior in /
examp|e given in Help and WhiCh /7 Scilab. The script must be closed to get rid of /

. the grey background colo
uses the obsolete xset() function |G /

_ clear,clc,clf;
m The xpoly() function draws a

polyline; the polyline is a closed X = sin(2*%pi*(0:5)/6); // Define hexagon

- o y = COS(Z*O/Opl*(OS)/6), //_ ”_
Soljeon Uf e DAMEE Bl UmEn: xpoly(x,y,'lines’, 1); // Draw polygone

of xpoly() is >0

e=gca(); // Get Axes handle
m Note the e.parent.... definition e-Palrer}t-baC'ggrOU”d = //// CE At
. color(‘grey'); set backgroun
that refers One_ Step up In the e.box='on'; // Switch frame on
hierarchy, to Figure e.foreground=5; // Red frame color
e.data_bounds=[-2,-2;2,2]; // Frame size
m With e.children.... we move one e.children.foreground = 2; // Blue graph color

step down in the hierarchy

Polylines (2/3): xpoly(),
plot & discussion

+

And this is the polygon The unedited hexagon can
that we have created: also be drawn with the
following script:

X = sin(2*%pi*(0:6)/6);

y = cos(2*%pi*(0:6)/6);
plot2d(x,y,strf='011",rect=[-2,-2,2,2])

It is left open if we do a
small change to the x/y
arguments:

X = sin(2*%pi*(0:5)/6);

y = cos(2*%pi*(0:5)/6);
plot2d(x,y,strf="'011",rect=[-2,-2,2,2])

Polylines (3/3): xpoly(),
lessons learned

+

m Scilab showed unexpected behavior with this script:

— The background color could turn black with the command e=gce();
e.parent.background=34 . The gcf() handle revealed that the setting
was background=-2 and the handle command had no effect. The
definition color(‘grey’) feels more stabile than its numeric counterpart

— The Graphics Window did not always change when the script was
changed and executed. The background stayed grey even if
e.parent.background=color(‘grey’) was deleted. When shifting
between two scripts on the Editor, the background color was exported to
the second script. The script had to be closed to get rid of the gray color

— I found no way to add ticks & marks to the box. The Axes handle gca()
showed them as defined, but for some reason they are suppressed.
Help/axes_properties gives no explanation

m Lessons learned: Do not exaggerate the extent to which you trade
ordinary plot functions (plot(), plot2d()) for handle commands

Programming pitfalls:

don’t forget clif;
+

// ptifalls_1.sce
// Clear commands /

K=100;a=0;b=0;
x = zeros(1,K); y = zeros(1,K);

fork = 1:K

x(k) = a+k;

y(k) = b+k~(0.5);
end
plot2d3(x,y,style=-1)

// ptifalls_1.sce

// Clear cemiimands /

for k = 1:K
¥(K) = ok superposed

y(k) =.b-k”{0.5); without the

E R |||| ll |||||||
K£10:2=0:b=0: l ||||||| | ““" ““N
x = zeros(1,K); y = zeros(1,K); ARXN[EIL= ” |HHI‘““‘IIII“““““““““ lllll““l“ll““ “Illllmllllll il

end
plot2d3(x,y,style=-1)

clf command

What to do with xset()?

m Examples in Scilab literature—and in blog discussions—frequently use the
function xset(). It's handy but obsolete, so what should we do about it?

m The Help Browser recommends using the graphic objects representation
instead (set(), get(), handle commands)

m Below are examples of how to substitute xset(). Note that xset() operates
on the current Entity level and gives the blue axes color, not the red graph

"] 2. Modified script
1. Initial script «=-1:0.1:2.6 with Axes handle

with xset() plot2d(x,sin(2*x),5,rect=[-2,-2,3.6,2]) command
xset("color’,2)

x=-1:0.1:2.6
plot2d(x,sin(2*x),5,rect=[-2,-2,3.6,2])

a=gca();
a.foreground=2

x=-1:0.1:2.6
plot2d(x,sin(2*x),5,rect=[-2,-2,3.6,2])
3. Modified script JglE%)
with set() and set(a,"foreground”,2)

handle argument

xset(): a practical case

+

Example 6-2 (last set of examples) is adapted from Pincon. The original
contained obsolete commands, in particular xset(). I substituted the
xset() commands with the following handle commands:

xset() command Handle graphics command
h=gc&)
xset(backgroundl) black h.backgrounc 1
xset(color,2) blue fill h.foreground= 2
xset(thickness,3) line thickness | h.thickness= 3
xset(color,5) red border h.foreground= 5

But frankly, it can be a pain and you want to throw the computer out
the window. If so, check if the gca() handle has any children at all...

Flawed error messages

+

m Scilab’s debugger shows strengths and flaws in the error messages
that invariably pop up before one’s plot commands are right

m Here are two error messages that I have got:

plot2d(x1,yl,style=5) // Function

I--error 999 plot2d: The real prObIem Was

first and second arguments have incompatible dimensions. < that I had not USG_CI
atline 16 of exec file called by : the Dot Operator in

exec("H:/Dr.EW/Writings/Scilab examples/derviative_2.sce"); the equation for y]_
while executing a callback

cle(); Bogus warning, Scilab crashed
I--error 13 | and had to be reloaded to
Redefining permanent variable. [PEaa— erase the C0n50|e_ ThiS
occurred when I used two
deff() functions in tandem

while executing a callback

More info on plotting

ﬂ Help Browser

In the Help
Browser, Click:
Graphics Library,
and under it you find |{REE
info on €.qg. 2 iy

tput functions

- 2D plots

- 3D plots —

- axes_operations/
axes_properties

etc.

Scilab manual >> Graphics Library > axes_operations > axes_properties

description of the axes entity properties

Description

NOW at |eaSt IS the s et F:IErEHtThiE:ﬁeld contains the handle of the parent figure.
time to get familiar e !

with the Help |
Browser

PDr.EW l
Johnny Helkell

+
8. Examples, Set 3

On plotting, handles, control

engineering, and user defined (@
functions

N\

Return to Contents

Example 3-1: More
control engineering plots

‘ m Example 2-3 and the log scale demo were typical control engineering
tasks. Recall also the pages on polynomials in Chapter 3

m Here we'll look at examples with Bode and Nyquist plots, Nichols
chart (Black’s diagram), and an Evans root locus plot

m The first cases use the second-order transfer functions

sz + 20s + 100 sz + 3s + 220

G.(s) = "
A8 = s+ 100 s2 + 255 + 225

m The Evans root locus is plotted for

o+ s
2000s?2 + 200s3 + 2584 + g°

G,(s) = 352

Ex 3-1:

S

T

cript

The first two gain equations
are given as ordinary T

polynomial expressions /

The third gain equation, to
be used in plotting Evans
root loci, is defined through
its roots

The Bode plot is only for the
gain, later the alternative
bode() will be demonstrated

Scilab talks about Black’s
diagram rather than Nichols
chart. Example 3-2 highlights
the difference between the
two

/

// control_eng.sce

// Plot Bode, Nyquist, Nichols & Black's, /
// and Evans for defined equations /

clear,clc,clf;
// Definition of systems:

s = poly(0,'s'); // Polynomial seed

Gainl = syslin('c',(s2+20*s+100)/(s"2+6*s+100));

Gain2 = Gainl*syslin('c',(s"2+3*s+220)/(s"2+25*%s+225));
Gain3 = poly(-5,'s")/poly([0,0,2000,200,25,1],'s','c");

Gain4 = syslin('c',352*Gain3);

// Bode plot:

subplot(221)
gainplot([Gain2;Gain1],0.01,100) // Magnitude plot

// Nyquist plot:

subplot(222)
nyquist([Gain2;Gain1]) // Plot with Re and Im axes

// Nichols chart (Black's diagram + iso-plots):

subplot(223)
black([Gain2;Gain1],0.01,100,['Gain2";'Gain1'])
chart([-8 -6 -4],[20 50 80],list(1,0,5))

// Evans root locus:

subplot(224)
evans(Gain4,100) // Evans root locus for sys4

Ex 3-1: plot

The plot has not ST
been edited, ' }
everything shown
is the result of the
script. Note the
red iso-curves on
the Bode-Nichols
subplot

{:1)]

ImChiZ2i™ pi™fn

a
=
3
=
=
=3
m
=

The next slide
looks at how
alternative Bode
plot commands
operate

=y

hagnitude
Imaginarny axis

’ '.'!1|:||:| 20 B0 -40 20 0 20 40 B0 20 400

Ex 3-1: alternative Bode
plot functions

‘ /I bode_comparison.sce This example demonstrates
// Compare the how the bode() and gainplot() / the bode() and gainplot()

// functions operate in Example 7 / functions when operating
clear dle.dif: on the earlier Gainl and

s = poly(0,'s"); // Polynomial seed Gain2 expressions. bode()
Gainl = syslin('c',(s”2+20*s+100)/(s"2+6*s+100)); p|ots also the phase

Gain2 = Gainl*syslin('c',(s"2+3*s+220)/(s"2+25*s+225));

// Plot with the bode() function: LOTTED WITH bode0

PLOTTED WITH gainplot)

subplot(121)
bode([Gain2;Gain1],0.01,100)
legena(Gairri’, Gainz’)
xtitle("PLOTTED WITH bode()")

// Plot with the gainplot() function:

subplot(122)
gainplot([Gain2;Gain1],0.01,100)
legend("Gaini’, Gainz’)
xtitle("PLOTTED WITH gainplot()")

+

Ex 3-1: comments

The script was modified after being copied from the Scilab Group
User’s Manual and pasted into Editor. When copy-pasting, Editor
tends to interpret citation marks ('c’,'s’, etc.) wrongly and they have
to be corrected manually

Scilab is strict with the arguments for polynomial expressions. If, for
instance, the ‘c’ is left out from the expression
poly([0,0,2000,200,25,1],’s’,’c"), it will be translated into 10000000s?
- 10455000s3 + 45522554 - 22265 + sb. Be careful!

There is an advantage in using self-documenting expressions, here
exemplified by naming the polynomials Gain1, Gain2, etc.

The separate Bode plot demo showed that the bode() function has
an advantage in providing also the phase of the system of interest

The difference between Black’s diagram and Nichols chart will be
demonstrated in Example 3-2

Example 3-2: Black vs.
Nichols

+

This example, adapted from Povy’s

tutorial, p. 78, shows what the // black_nichols.sce

chart() command adds to Black’s // Demonstration of black() and /
diagram // chart() functions /

The first vector argument of dear,cic,cif;

chart() defines the iso-gain curves s = %s;

to be plotted Gain = (24+3*s+572)/(1+3*5+2.5*¥s"2+5/3);

system = syslin('c',Gain);
The second argument defines iso-

black(system,.01,100) // Plot Black's diagram
phase Curves Chart([-8l-21513I6I12][[5I2516OI120]I||St(1l11215))
/] chart() adds iso-graphs

list() defines plotting properties
(the last argument does not have

any effect) History Quiz:Did Nichols base his
Check with Help for details chart on work by Black or by Hall?

Ex 3-2: plots

black(sl,.01,100

black(sl,.01,100)
chart ([-8,-2,.5,3,6,12],[5,25,60,120],list(1,1,9, b=

Example 3-3: an RC
circuit

m Let's do a Bode plot using just
basic circuit theory and no

Laplace rubbish e AVAVAY)

m The case is the simple RC
circuit to the right (first-order u C=04uF
low-pass filter)

m The task is to plot both the o o
magnitude (gain) and phase

out

3\
/|

m The bode() function is not u
suitlallble gor 1thisé gs(;l)se, icr|15dte1§d G = _
we'll used plot and define :
it separately for magnitude Hin 1+ 12nfRC
and phase

Ex 3-3: script

m The logspace(1,6,60)
command means starting
point 101, end point 106,
in 60 steps and
logarithmic scale

m Trigonometric phase
definition and conversion

to degrees \

m The logflag = ‘In’
argument defines a
logarithmic x-scale and
linear (normal) y-scale

m Different styles and
xgrid() arguments have
been used to
demonstrate their effect

// bode_RC.sce

// Bode diagram for an RC circuit /
// (first-order low-pass filter) /

clear,clc,clf;

R =1e+3; // Resistance in ohm

C=1le-7; // Capacitance in farad

freq = logspace(1,6,60); // Frequency range, logarithmic
G=1./ (1 + %i*2*%pi*freqg*R*C); [/ Transfer function
G_dB = 20*log10(abs(G)); // Logarithmic scale
phase = ((atan(imag(G),real(G)))/(%pi))*180; // Phase

subplot(211); // Amplitude plot
plot2d(freq,G_dB,logflag="In",style=5)

xgrid(2) // Blue grid
xtitle("Amplitude','Frequency (Hz)','Gain (dB)")

subplot(212) // Phase plot
plot2d(freq,phase,logflag='"In',style=2)

xgrid(3) // Green grid
xtitle("Phase’,'Frequency (Hz)','Phase (deq)')

Ex 3-3: plot
+

Note that the x-
axis label is
missing for the
phase plot,
although it was
specified. Scilab
does not repeat it
since it is the _ _ : _
same as the top Fuquanoy 43
one. Change the :
subplot
declarations to
(121) and (122)
and the x-axis
label is given for
both parts

Amplitude
S i N
[N} - . 1

&
-
=
m
L)

Fhase (deg)

+

Example 3-4: linear
antenna array

The task is to investigate the
behavior of the Array Factor,
AF (also know as field
intensity pattern), of a linear
antenna array with N = 10
isotropic radiating elements,
when the main beam is
scanned at 6, = 60° and
element spacing d = 0.45
and 0.55 wavelengths

(For a discussion on antenna
arrays, see Brookner, E.
(ed): Practical Phased

Array Antenna Systems,
Artech House, 1991)

(n-l)-d-simp

IR ST sy ey e
Radiating
elements YN n 3 2d 1
Amplitude
weights Wy W] Wot T w, 1] w,
Phase L
shifters)</a, a,)Ja,) /a, KJa,
En
: d :
sin [NTT (7)-5|n 0]
| AF | =

sin[n(%)-sine]

Ex 3-4: beam scanning

__+_

The previous expression for

AF is valid when the beam is
normal to the array axis
(broadside case). If the

beam is deflected, the scan
angle 6, must be included in

the equation —_—

(In a more complete
simulation we must also
include element factors,
tapering, and mutual
coupling between the array
SEnES)

Scan angle

f

sin [N (%)-(Sin 8- sin 6,)]

| AF | = d ‘
sin [11 () (sin © - sin)]

)

Scan angle

Ex 3-4:
script

+

This script is for the
previous expression for

AF, but normalized

(divided by N) to keep

the main beam value at {
unity. The phase _—"
functions have been
defined separately in

order to shorten the
expression for AF_norm

The array factor is —
plotted both in linear and
polar presentation

// array_factor.sce

) wremeermmeee e e

// Plots the array factor of a linear antenna array with N elemnts, /
/7 spaced at d wavelengths, and main beam scanned at +60 degrees /

) wromeeremeee e e/

clear,clc,clf;

// Variables:

N = 10; // Number of radiating elements

dl =0.45; // Element spacing in wavelengths

d2 = 0.55;, // Ditto

theta = [-%pi/2:0.01:%pi/2]'; // Half space, +/-90 deg
theta_z = %pi/3; // Scan angle

// Define array factors:
f_phasel = %pi*d1*(sin(theta)-sin(theta_z)); // Phase function
f_phase2 = %pi*d2*(sin(theta)-sin(theta_z)); // Ditto
AF_norm1 = abs((sin(N*f_phasel)./sin(f_phasel))/N);

// Normalized array factor (d=0.45)
AF_norm2 = abs((sin(N*f_phase2)./sin(f_phase2))/N);

// Normalized array factor (d=0.55)

// Plot functions:
subplot(211 // Linear plot (d=0.45,0.55)
plot2d(theta,[AF_norm1,AF_norm2], style=[2,5],...
leg="d = 0.55@d = 0.45")
xtitle("ANTENNA ARRAY FACTOR, N = 10, Beam angle = 60 deg",...
"Theta (radians)","Normalized amplitude")

subplot(212) // Polar diagram (d=0.55)
polarplot(theta,AF_norm2, style=5)
xtitle('POLAR DIAGRAM FOR d = 0.55:")

Ex 3-4: plot
+ Grating lobe Main lobe

ANTENNA ARRAY FACTOR, M= 10, BEeam angle = 60 deg

The plot verifies the
common rule of thumb,
according to which the
array element spacing
must satisfy the
condition d < A/2 or
detrimental grating o
lobes will show up - d=085 Theta gadians)

d=045
1=045 poLaR DIAGRAM FOR d = 0.55:

zed amplitude

Marmali

Note that there is a
mirror image in the
other half space, only
the £900° case has
been plotted

Ex 3-4: modified plot
+

m This case shows d=0.45
only. Other changes are:

— Element spacing d =
0.75

— Element number N = 30
— Scan angle = -30°

m Scilab 5.1.1 tended under 20 s |
conditions like these to OLAR REPRESENTATION
present only a part of the
polar plot, but at the
same time increase the
size and let the polar plot
overflowed the linear plot
(which wasn’t bad). This
seems to have changed

+

Example 3-
3D sinc

This example is adapted from
Kubitzki, Einfdhrung in Scilab,
pp. 41-42, and can be

compared with the earlier one
for plotting a 3D sinc function

The script introduces the use
of colormaps to identify
graphics colors. The argument
of coppercolormaps() defines
the number of colors in the
map; 32 is typical

4

‘e

L 4

Note that color_map works 2
on the Figure level (f=gcf())

Here we use the pair
drawlater() and drawnow() <

77/ é/nc_ colormap.sce

/7 Define and plot 3D sic funtion, graphic /
// adjust properties with handles /

clear,clc,clf;
x=linspace(-10,10,50); // Linear space of x
y=X; // Ditto for y

/) ¥*** SUBROUTINE sincf(): **** [
e
function [z]=sincf(X, y)
r=sqrt(x."2+y.~2)+%eps; // Auxiliary computation
z=sin(r)./r; // Amplitude
endfunction

/¥ MAIN, Compute sinc function: **** [

msssanmnn i it s e
w=feval(x,y,sincf); // Evaluate with SUBROUTINE sincf()

// Plotting & plot control:
e
d drawlater(); // Suppress plotting until ready
plot3d(x,y,w); // (Suppressed) plot function
Mo f=gcf(); // Get Figure handle
f.color_map = coppercolormap(32); // Set color table
h=gca(); // Get Axes handles
h.rotation_angles=[87,42]; // Set angle of observation
h.children.color_flag=1; // Use current color table
xtitle('sinc()’,'X','Y",'Z2"); // Title & legend

v

to control the plot process

. drawnow(); // Plot now

Ex 3-5: 3D sinc, plots &
comments

‘ Scilab has numerous colormap alternatives
that allow the color of a 3D plot to be
changed, e.g. the ones shown here. Check [
Help/Color management/colormap for o
more alternatives

e - —
>] /A

coppercolorma
hsvcolormap() P PO

hotcolormap()

sine()

Example 3-6: Lissajous
figures, task

+

m The task is to write a script that generates Lissajous figures and to
edit the figure with handles

m Lissajous figures are familiar to all who have worked with an
oscilloscope in high school physics lab

m Mathematically Lissajous figures are the graph of a system of
parametric equations of the type:

X = A-(sin(wt) + ¢)
y = B-sin(mt)
m We shall plot two figures in one window, the combination of
sin(x) & cos(3x)and
sin(1.5x) & 0.5*cos(1.5x)

m For comparison we first do a basic plot with plot2d() and then modify
the figure with handles

Ex 3-6: Lissajous figures,

script 1
+

m Sine and cosine functions are
grouped into matrices

m The plot2d() argument
[2,5] defines graph colors

m The argument leg defines

the legend =

m The argument nax defines
axes divisions

m The argument rect defines
the extension of x and y axes

// handles_demo2-1.sce

// Two Lissajous figures, sin(t) & cos(3t) and /
// sin(1.5t) & 0.5*cos(1.5t), with plot definitions /
// given by arguments of the plot2d() function /

clear,clc,clf;

// Plot Lissajous figures:

t=linspace(0,6,100)’;
sines = [sin(t) sin(1.5*t)];
cosines = [cos(3*t) 0.5*cos(1.5*t)];
plot2d(sines, cosines, [2,5], ...
leg="sin(t), cos(3t)@sin(1.5t), 0.5*cos(1.5t)',...
nax=[1,9,1,9], rect=[-1.1,-1.1,1.1,1.1])

+

Ex 3-6: Lissajous figures,

plot 1

The figure defined by sin(t),
cos(3t) has not quite finished a
full loop (its reach is defined by
the argument 6 in linspace())

The second figure, sin(1.5t),
0.5*cos(1.5t), is already on its
second loop. The ellipse
becomes a circle if we change
the cosine amplitude to 1

Pay attention to the fact that
plot2d() combines sines and
cosines arguments element-
by-element

That was the basic thing, how
do we improve it?

+

Ex 3-6: Lissajous figures,

plot 2

This is the plot that has been
modified using handles.* The
script is presented on the
next four slides

Major modifications are:

- Both Lissajous figures are
arrow style, one line is dash-
dotted

- Title and axes labels have
been added & edited

- Background color has been
added

- The legend box has been put

in the lower right-hand corner,

text edited and box color
added

A grid was added & edited

Two Lissajous figures

*) Ok, | have done some additions as well.

Ex 3-6: Lissajous figures,

Jrscript 2(1/4)

m # of linspace() steps is

// handles_demoZ2-3.sce

lowered to 40 to better // Two Lissajous figures, sin(t) & cos(3t) and /
show the arrows that are ;;5//7(1570 %/0.5*605(].50, with plot edited ;
used below using handes
m The body of plot2d() is clear,clcdf;
retained, the reminder will B
- Plot L fi H
be done with handles g ot saous faures:
. . x=linspace(0,6,40)'; // 40 steps to allow arrows
m The ﬁgure handle_ls called sines = [sin(x) sin(1.5*x)]; // First figure
by ng(), after which the cosines = [cos(3*x) 0.5*cos(1.5*x)]; // Second figure
figure background CQ|_OI‘ plot2d(sines,cosines,rect=[-1.1,-1.1,1.1,1.1])
1(2: (E)] nS (I? I‘?p%l elf)med (ad dition // Add background color:
[fff-mmmmmm e

f=gcf(); // Get Figure handle
f.background=color('grey"); // Grey background color

Ex 3-6: Lissajous figures,

m Call Axes handle with gca(),
then edit the two Lissajous

script 2 (2/4)

// Edit Lissajous figures:
maesnansnansnansn i

fi gures " a=gca(); // Get Axes handle

1=a.children; // sin(1.5x), 0.5*cos(1.5x)

P
u p]. & p2 are Compounds, / pl.children(1).polyline_style=4; // Arrow mode

children to Axes

m The graphs are Polylines and
grandchildren to Axes

m Title and axes labels must first
be added, after which they
can be edited

m Recall that Title is a child to
IAV(ES

m Check with Help/
graphics_fonts for details on
fonts

pl.children(1).foreground=2; // Change color to blue
pl.children(1).arrow_size_factor=2; // Line thickness
p2=a.children; // sin(x), cos(3x)
p2.children(2).line_style=4; // Dash-dot line
p2.children(2).foreground=5; // Change color to red
p2.children(2).polyline_style=4; // Arrow mode
p2.children(2).arrow_size_factor=2; // Line thickenss

// Add & edit title & labels:
B

xtitle("Two Lissajous figures', 'x-axis', 'y-axis');
a.title.font_style=8; // Font: Helvetica bold
a.title.font_size=3; // Increase title font size
a.x_label.font_style=7; // Font: Helvetica italic
a.x_label.font_size=2; // Increase x-label font
a.y_label.font_style=7; // Font: Helvetica italic
a.y_label.font_size=2; // Increase y-label font

Ex 3-6: Lissajous figures,

Jrscript 2(3/4)

// Edit ticks & marks (labels):

R e
m X-and Y-axXIS (o CR UGG ; ticks = tlist(['ticks', locations', labels'], ...
[-1.1,-.825,-.55,-.275,0,.275,.55,.827,1.1],...
(IegendS) s added ['-1.1','-.825','-.55','-.275",'0",".275",".55',...
] .825','1.1"]);
m Axes label font color & size a.y_ticks = tlist(['ticks','locations’,'labels'], ...

are redefined [-1.1,-.825,-.55,-.275,0,.275,.55,.827,1.1],...
\ [-1.1'-.825'-.55'-.275''0',".275',".55',...
m Note that Ticks and '.825','1.1");

Legends (marks) are a.labels_font_color=13; // Change label color

; i a.labels_font_size=2; // Increase label size
children to Axes, similar to
La bels // Add & edit legend:
msmnazznnananananisaes
: ; . |egend(['sin(x), cos(3x)'; 'sin(1.5x), 0.5*cos(1.5x)'], 4);
= A Iegend is added & edited leg=a.children(1); // Get legend handle
leg.font_style=2; // Font: Times
leg.font_size=2; // Increase legend font size
leg.font_color=1; // Font color black

leg.background=7; // Yellow legend box fill

Ex 3-6: Lissajous figures,

+script 2(4/4)

m To finish, the grid is turned “on”

and line colors edited \ / Add & edit grid:
Jf-mmmmmmmem e

m Scilab does not have an

i PR . set(gca(),'grid',[1 1]); // Matlab's "grid on”
equivalent for Matlab’s “grid on, a.grid(1)=color('green"); // Vertical line color
this is a way of circumventing a.grid(2)=color(‘'green"); // Horizontal line color

the problem

There were huge problems when I first tried to include the gce(), get

current Entity, command in the script. The background color did not come
up after Scilab was reloaded, I could not define ticks, etc.

Lessons learned: Be sure that you now what you do with gce()!

And a final check on
the next slide...

Ex 3-6: Lissajous figures,
check

After all these modifications, let’s make sure that we can recall the
basic plot by adding the following lines at the end of the script:

// Check default settings:

macananesnananansninsnaneas
xdel(); // Delete Graphics Window

sda(); // Reset default Axes
plot2d(sines,cosines,rect=[-1.1,-1.1,1.1,1.1])

When we run the script,
Scilab briefly flashes the
modified plot,* deletes it, and
puts up this window instead.
The basic Lissajous figures
seem to be ok

*) You can use the function pairawlater() anddrawnow() to avoid the
flashing, as was done in Ex 3-5.

Dr.EW I
Johnny Heikell

9. Converting Matlab
files

The embedded Matlab-to-Scilab
translator seems to work and 4@
manual conversion is an option

N\

Return to Contents

Tips on Matlab to Scilab

+

conversion

' ! Help Browser

About halfway down the |E=
Help Browser (which is
not in any logical order)
you find Matlab to Scilab
Conversion Tips. You
will see a long list of the
m2sci_... type of
functions

Click on the first
subheading, Matlab-
Scilab equivalents, and
you get a list of Matlab
functions and their Scilab
equivalents (missing ones
are not included, like
text() and xlim()
mentioned below)

Matlab binary files /O Scilab manual

Scilab manual == Matlab to Scilab Conversion Tips

Matlab to Scilab Conversion Tips

a Matlab-Scilab equivalenis

/alue and complex magnitude

Using the integrated Matlab-
to-Scilab translator

+

m Scilab can convert Matlab’s .m files to .sci files, although we should
not expect the conversion to be fully successful every time. The
translated script may have to be modified manually

m We start by opening the translator: *

| m Scilab Console

. :Filv.'-_- Edit Preferences Contro
On the Console, Click: ZG|A00B|A

Applications\Matlab to
Scilab translator ;

S Matlab to Scilab translator
What happens neXt you can se Module manager - ATOMS
on the following slide Variable Browser

Command History

*) It used to be possible to import Matlab fileseditly, but this option does not
exist any more.

M-to-S translator: the
process

+

The conversion tool opens

& Matlab to Scilab conversion tool
SRR

File 7

1. Click: (File name) Browse
oo e R and identify the file that you
@ Convert a single file Convert a whole directory

want to translate

Input fi >

File name: C:\UsersUohnnyiDocumentsiLiterature\Watt __E'_FC_'E{EJ 2. C“Ck: (DlreCtory na me)
St = Browse to point out where to
E— N put the translated script (and

Option! - .
FLZ[:urE:i'-.re COnversion: es aSSOCIated prOdUCtS*)
Only double values used: Yes _ _ 3. C“Ck: COHVeI’t

Werbose mode;

Generate pretty printed code:

*) The conversion produces
two text documents and two
.SCi scripts

M-to-S translator:
messages on the Console

‘ B scilab Console . | = |-E |5
File Edit Preferences Control Applications I -

ZE ADD B AZ 2 @ @@
Scilab presents a &= S
list of translation
conditions and |
also warnings of [l
pOSSibIe €rrors T s & 56T computing/Matiab/Senieher,
on the Console.
The warnings
are repeated as
comments in the
script (and on
one of the text
documents)

Next, open the _
translated script
in the Editor exkxss End of m -

M-to-S translator: script

1/4
+(/)

This is the script that the translator delivers. It contains comments that

may or may not be of importance:

Statement & warning

added by Scilab \'

Here comes the
second warning. The
Matlab command was
clear,clc,clf;. May
be of importance if
the script is edited
with handles. In such
a case, try to create
a hew script by copy-
pasting

q

// Display mode
mode(0);

// Display warning for floating point exception
ieee(1);

// Monopulse Antenna Pattern

clear,clc,// ! L.4: All children will be deleted, no
HandleVisibility property in Scilab graphics.

clf;

// Normalized Aperture Width
na =4,

// Sampling Frequeny=Number elements per norm aperture
fs = 8;

+

M-to-S translator: script

(2/4)

Everything runs smoothly
here

The code is expected to
present the sum and
difference patterns for a
monopulse antenna
(tracking radar, etc.)

// Norm aperture with N elements
N = fs*na;
xna = na*(-1/2:1/(N-1):1/2);

// Illumination Function

wxna(1,1:N/2) = ones(1,N/2);
wxna = mtlb_i(wxna,N/2+1:N,-ones(1,N/2));
wxnb(1,1:N/2) = ones(1,N/2);
wxnb = mtlb_i(wxnb,N/2+1:N,ones(1,N/2));

// Fill with M/2 zeros front and back
M = 1024;

xna = na*(-1/2:1/N+M-1:1/2);

wxna = [zeros(1,M/2),wxna,zeros(1,M/2)];
wxnb = [zeros(1,M/2),wxnb,zeros(1,M/2)];

// Beam Functions from -fs/2 to fs/2 in sine space

Nfft = max(size(wxna));
Esine = mtlb_fft(wxna,Nfft);
Esine = fftshift(Esine);

+

M-to-S translator: script

(3/4)

Here comes more
warnings. May relate
to a rounding error

Esum = mtlb_fft(wxnb);
Esum = fftshift(Esum);

// Azimuth vector

sinfi = ((fs/4)*(-Nfft/2:Nfft/2-1))/Nfft;

// Azimuth vector in radians

// " L.45: If sinfi is outside [-1,1]

// V' complex part of output of asin(sinfi) will be the
opposite of Matlab one.

fi = asin(sinfi);

// Beam gain functions

Gfi = (Esine .*conj(Esine))/Nfft;
Gfs = (Esum .*conj(Esum))/Nfft;

Gfi = mtlb_i(Gfi,1:Nfft/2,sqrt(Gfi(1:Nfft/2)));
Gfi = mtlb_i(Gfi,Nfft/2+1:Nfft,-sqrt(Gfi(Nfft/2+1:Nfft)));
Gfs = sqrt(Gfs);

M-to-S translator: script

(4/4)

Note that title() is an
alternative to xtitle()

+

// Plot Monopulse Antenna Pattern

plot(fi,Gfi,fi,Gfs); mtlb_grid;
Here come the |aSt set(gca(),"data_bounds",matrix([-0.25,0.25,-0.8,1],2,-1));

warnings. The next ylabel("Amplitude");
xlabel("Angle - radians");

slide shows what \ title("Monopulse Antenna Patterns");

they mean // Y1 L.63: Matlab function text not yet converted,
original calling sequence used.
text(0.04,0.8,"Sum Pattern");
Well, let’s see how // 1" L.64: Matlab function text not yet converted,
. original calling sequence used.
Scilab reacts by text(-0.22,0.6,"Difference Pattern");

executing the script...

M-to-S translator: plot
|

“ontenna Patterns

Yeees, it comes,
labels and all!

But the legends are
missing, which
means that Scilab
cannot cope with
Matlab’s text()
function

020 015 -0.10 005 0.00 0.05 0.10 0.15 0.z0

Angle - radians

M-to-S translator:
comments

+

m Based on this example one could say that the embedded Matlab-to-
Scilab translator is adequate

m A legend has to be added manually to compensate for the missing
text() information*

m The example demonstrates partly good programming practice by
declaring each logical entity. However, informative explanations
could be added

m Another improvement is to use expressive variable names. Why not
talk about sampl_freq instead of fs, and what does wxna() stand
for?

m Help sheds no light over the meaning of the second .sci files that the
conversion produces

*) A paper by Sharma &obbert(2010) reports that the translator cannot
cope withMatlab' s xlim() function. In their case thelot() function had to
be manually changed tdot2d() to correct the problem.

Manual conversion (1/6):
Case #1, script

% beating sinusoidal tones

(top) and its Scilab equivalent X = cos(2*pi*1500%t) + cos(2*pi*1300%t);
(bottom). The way I did it: m = 2*cos(2*pi*100*t);
.) plot(t, m, 'b:’, t, -m, b, t, x, 'k"),...
m Checked visually for differences: axis([-0.01 0.01 -2.4 2.4]),...
— . 0 title('‘Beating between tones’),...
Comments. _/° >/ /_ _ xlabel(‘Time (s)’),...
— Built-in functions: pi > %pi ylabel(‘Amplitude’)

— Plot commands are split up on
multiple rows. Indents are not

i M-to-S_1-modulation.
necessary, but a visual help /| M-to-S_1-modulation.sce

m Changed what I could, the run // beating sinusoidal tones /
the script and let Scilab’s cear,cl.dlf:
debugger yeII about the rest t = linspace(-1e-2,1e-2,1001);
) — *0/ ik * *0/ ik *t) -
= Checked frequently with Help i e

(particularly Matlab—Scilab plot(t, x.*m, rect = [-0.01 0.01 -2.4 2.4])

equivalents) to understand the Sf;igl?eﬁ“rﬁg (2‘)"?‘;“66” tones’)
error messages on the Console ylabel("Amplitude’)

Manual conversion (2/6):

Case #1, plot
+

m There were some problems
with this conversion:

— I split up Matlab’s long
plot() command, but the
abbreviated form did not
work in Scilab

— First I changed Matlab’s
axis() to rect(), then
swapped the preceding
argument part for x.*m.
Now plot() worked

— The label commands gave
problems. The reason
was—again—that I had
copied the Matlab code
and the quotation marks
were pasted incorrectly

Manual conversion (3/6):
+Case #2, script & plot

m The pie() function has not been discussed before, but below is a
short Matlab script that draws a pie graph*

m The pie() function also exists in Scilab, the difference is that Scilab
does not support Matlab’s pielabel() function

revenues = [31 36 18 8 7];

h = pie(revenues);

pielabel(h,{'Income Tax: ';'Sales Tax: ';'Borrowing: ;...
'Corporate Taxes: ';'Misc: '});

// M-to-S_2-pie.sce

// Draw a pie graph with labels /

clear,clc,clf;

TS = (50 26 e @ /1 - *) A more general sector chart
pie(revenues,['Income Tax';'Sales Tax';'Borrowing';...

'Corporate Taxes';'Misc']); will be presented in Example 6-4

Manual conversion (4/6):
Case #3, script & plot

m As a last case, let’s look at a shifted sinc function

In this case the problem is that polardb() is an informal creation
by Matlab users which Scilab does not support

X = -(5*2*pi):.1:(5*2*pi);

th = linspace(-pi,pi,length(x));
rho=((1+sin(x)./x));
polardb(th,rho)

// M-to-S_3polarplot.sce

// Polar plot of 1+sin(x)/x /

clear,clc,clf;

X = -(5%2*%pi):.1:(5*2*%pi);

th = linspace(-%pi, %pi,length(x));
rho = 1+sin(x)./x;
polarplot(th,rho)

Similar, but not the same as the
Matlab plot if radial units are in dB

Manual conversion (5/6):
Case #3, discussion

m The polar plot with radial
units in dB looks rather
“counterintuitive,” since
its sidelobes appear to
be pointing in the wrong
direction

// M-to-S_3polarplot.sce
// Polar plot of 1+sin(x)/x /

clear,clc,clf;
X = -(5*%2*%pi):.1:(5*2*%pi);

th = linspace(-%pi,%pi,length(x));
rho = 10*log10((1+sin(x)./x));
subplot(211);

plot2d(th,rho)

subplot(212);

polarplot(th,rho)

Manual conversion (6/6):
discussion & hints

+

Manual conversion of Matlab codes to Scilab scripts is possible, there
are users who claim to do it regularly

Scilab for Matlab Users —tutorials and Scilab discussion forums can
help in understanding the differences

Some Matlab functions simply do not exist in Scilab (and vice versa).
Examples are axis(), compass(), feather(), fill(), nargin(), polar(),
quad(), quiver(), stem(), stairs(), and waterfall()

Sometimes alternative Scilab commands exist (e.g., Scilab’s
plot2d2() can compensate for Matlab’s stairs()), sometimes not. If
not, the script may have to be rewritten

Scilab’s user-defined functions must be loaded with getf(), while
Matlab has no separate load function

Matlab’s run data.m should be traded for exec(‘data.sci’) in Scilab

One more case of manual conversion will be presented in Example 6-
5 (Chapter 19)

PDr.EW l
Johnny Helkell

10. Subroutines

This discussion on subroutines is
a prelude to flow control that will @
be discussed in Chapter 11

N\

Return to Contents

Terminology

+

Recall from Chapter 1 that Scilab does not recognize the term
“subroutine,” which belongs to the group of varied constructs that
Scilab calls “function.” More exact, we are talking about user defined
functions (UDFs), an expression that Scilab also does not know

Regardless of official Scilab terminology, I will—when possible—use
the traditional term subroutine since it is an elegant way of pointing
to specific entities in computer programs

An introductory demo

function A = triangle_area(a,b,c)

m Recall Examﬁle 1-3 that

introduced the concept of user // The function ‘triangle_area' calculates the /

defined functions (UDFs) // area of a triangle with side lengths a, b, c. /
m Task: Write a function that funcprot(0) _

calculates the area of a triangle p = (a+b+c)/2 /[p = half perimeter

i ' A = sqrt(p*(p-a)*(p-b)*(p-c))
with known side lengths / ol 4l

m The function is entered on
Editor

-->function A = triangle_area(a,b,c)

m [t is then loaded into the -->// The function 'triangle_area’ calculates the /
Console using the Editor D & -->// area of a triangle with side lengths a, b, c. /
command Execute/. .. file ~=>iUncprot(o) .

Tl el -->p = (a+b+c)/2 /I p = half perimeter
-->A = sqrt(p*(p-a)*(p-b)*(p-c))

m The function is executed by ~>endiunction
entering the function name and _->triangle_area(4,5,6)
input parameters (side lengths) ans =

on the Console

9.9215674

Local and global functions
(subroutines)

m Local functions are embedded in a script and valid for it alone, global
functions are saved separately and accessible to any script

+

Global function
(global subroutine)

Scilab script

Local and global variables

+

m You will run into the terms local and global variables and they
need a short clarification:

— As with functions, Scilab has two types of function variables,
local and global:

m Local variables are limited to a specific function

m Global variables are available to, and can be altered by, all functions
in which the variable has been declared global

— The transfer of parameters using command window (Console)
variables and global variables is not too obvious. Global

variables, in particular, can lead to errors that are difficult to
detect

— For the reasons mentioned, the use of global variables should be
limited to @ minimum

m In conclusion, we consider only local variables that are the
default setting in Scilab. This discussion is therefore trivial

Subroutines, more

formally

+

In the general case where a subroutine has several input arguments
(in_argl,in_arg2,...) and returns several output arguments
(out_argl,out_argz,...), the structure is:

function [out_argl, out_arg?,...] =...
funktion_name(in_argl, in_arg?2, in_arg3,...)
out_argl = expression for 1st output argument;
out_arg?2 = expression for 2nd output argument;

endfunction

Structure borders are the 7furnction endfunction limiters

Input arguments are grouped with brackets (parentheses), output
arguments with square brackets (not needed for a single output
parameter)

In both cases the arguments are separated by commas

+

On output arguments

The example to the
right highlights the
basic way in which

Scilab manages output

arguments of
subroutines

When you need to
influence the
management of input
and output variables,
Scilab offers the
functions argn (),
varargin (), and
varargout ()

-->function [y1,y2] = myfunc(x1,x2);

-->y1 = 3*x1,
-->y2 = 5*X2+2,;
-->endfunction

-->myfunc(4,7)
ans =

12. 3x4=12

-->y2 = myfunc(4,7)
y2 =

12. 3x4=12

-->[yl,y2] = myfunc(4,7)
y2 =

37. 5x7+2=37

yl =

With no output
argument defined,
the first output
argument is returned
in the ans variable

The same answer is
returned when only
one output argument
is defined

With both output
arguments defined,
the result of the
computation is
returned in full

Vector arguments

m This function* uses vectors as
input and output arguments

m The function is first defined —

m After that the output —
arguments—the operations to
do—are defined

m Next the input arguments
(row vectors) are entered

m At the end the function is ———»
executed

m The in-line function deff() is a
specialized form of local
functions

-->// Define local subroutine cross_product
-->function [x] = cross_product(a,b)

—-> x(1) = (a(2)*b(3) - a(3)*b(2))

—-> Xx(2) = (a(3)*b(1) - a(1)*b(3))

—-> X(3) = (a(1)*b(2) - a(2)*b(1))
-->endfunction

-->// Plug in numeric values
-->a=[-258];
-->b =[7 -13 -5];

-->// Executing the subroutine
-->C_prod = cross_product(a,b)
C_prod =

x(1)=5%(-5)-8*(-13)
x(2)=8*7-(-2)*(-5)
x(3)=-2*(-13)-5*7

79.
46.
- 9.

*) Here | use the term “function” since the codengdependent and not callec‘i

by a main program.

+

script

Demo (1/2):

Task: Compute & plot a

parabola, find its -
positive root 0

; /
Here the subroutine is I
called for the first time | \
using the input .
argument x \\

\

Here the subroutine is called
twice more, first with the
input argument a, then b

Interesting way of finding
the root location. Later we'll
do the same using fsolv()

// subroutinel.sce

// Compute & plot the function y = x*2-x+1 in the /
// range [-5,5] and determine its positive root. /
// Assume we know the root lies in the range [1,2] /
clear, clc, clf;

// SUBROUTINE para():

function y=para(x); // Subroutine declaration
y = x"2-x-1 // Equation (parabola))

endfunction

// MAIN script:

X = linspace(-5,5,100); // Range of interest
plot(x,para) // Call subroutine and plot
xgrid; // Add grid

a=1; b=2; // Search limits
while b-a > 10~(-4) // Accuracy for searching root
c = (a+b)/2; // Midpoint of limits
if para(a)*para(c)>0 then // IF (lower)*(midpoint)
// is positive
// THEN change lower limit

/] ELSE change upper limit

disp("The root lies between "... // Output root limits
+string(a)+" and "+string(b))

|

Demo (2/2): plot,
printout & comments

The root lies between 1.617981 and 1.618042

This demo was borrowed from
the pamphlet “Scilab pour les
Lycees”

Notice that the calling command
was abbreviated to the extent
possible. Instead of plot(x,para)
we could write:

a = para(x);
plot(x,a)

Subroutines have to be declared
before the calling main part of
the script

Later we'll see scripts with
multiple subroutines, told apart
b?/ their names. Subroutines can
also be nested (next slide) and
can call other subroutines

Nested subroutines

+

m Subroutines can be nested—if it is worth
the added complexity -->function y = nested(x)

endfunction

> a=sin(x) + 2*%pi;
m The example shown here computes the - fanctiony = inner(x)
equation > y = X2 -sqrt(x);
>
>

y =inner(a) + 3°2;

Y (X) — (Sln (X)+ 2*%]:)1) 2 — ~o — :->endfuncti0n

sqrt (sin (x)+ 2%%pi) + 3

. -->value = d(%pi/3
in three steps: First sin(x)+2*%pi is B SIS R

calculated. The result is then squared and
subtracted with the square root of itself. S7.437413
Finally, 3~2=9 is added

= Plug in the eq“at'or? In e > (sin(%pi/3)+ 2*%pi)2 - sqrt(sin(%pi/3) + 2*%pi) + 372
calculator and yes, it gives = -
the same answer. I prefer

this old fashioned method S7.437413

The deff() primitive

The deff () primitive can be used to define simple functions (it
resembles Matlab’s inline() function)

deff () is therefore used in local subroutines
The syntax is:

deff (‘y = function_name(x1,x2,...)", ‘'y=function expression’)

Below is the same equation computed on the Console with function

and deff() alternatives: /

Note the
semicolon!
-->9(2), 9(-5) (Scilab

ans = understands
if you skip it
after the
second y
expression)

-->deff('y = f(x)",'y = x"2+x-1") -->function y = g(x); y = x*2+x-1 endfunction

-->f(2), f(-5)
ans =

Global subroutines:
window dem (1/4)

ar

‘ m This demo creates a global l
subroutine (function) for a
reusable graphics window

m First, open Scilab’s Graphics
Window (one alternative is by
the command gcf(); on the
Console). The empty Graphics
Window pops up

m [ext, On the Graphics Window,
Click: Edit/Figure properties B
to open the Figure editor (this
has been explained before)

m [hird, select a suitable Back
color (e.g. 22 for ecclesiastic
violet) and you can see the -
frame on the Graphics Window
(the bar goes only to 32, gray
IS not an option)

Global subroutines:
window demo (2/4)

‘ 7& Awes Editor
Ob rowser

m [Fourth, you need to
play with the Figure
Editor for quite a while
to fill in all details

m Note the Ticks...
button on the Graphics
Editor. It opens a |
separate window in o e e
which you can define & o —— S
label grid lines

m |ater, when all details
match, you reach
something like this

m Finally, save it with the
help of the Graphics
Window. Click:
File/Save...

i E
i E

[[B e

Global subroutines:
window demo (3/4)

m Scilab answers on the Console:

m So it is as a subroutine. I called
it window_demo.scg . Note the
ending .scg. Not .sce or .sci.
It's g for graphic

m Then we need a main script
that uses global subroutine

m Note that I call the Entity
handle e=gce(). It simplifies
compared to the path needed if
calling the Axes handle, as was
done in Chapter 7

// reuse_function.sce

// Reusing graphics function, /
// defenitions with handle commands /

clear,clc;

// SUBROUTINE, load function
B

load('window_demao.scg');

// MAIN, define and plot:

mamesmanesnananansn s

X = [-4:0.01:4]; // Horizontal extension

yl = 2*sin(x) - 2; // First equation

plot2d(x,y1, style=2); // First plot, blue
e=gce(); // Get Entity handle
e.children.thickness=5; // Polyline size

y2 = 2*cos(2*x) + 6; // Second equation

plot2d(x,y2, style=3); // Second plot, green
e=gce(); // Get Entity handle
e.children.thickness=5; // Polyline size

|

Global subroutines:
window demo (4/4), plot

Do you have problems
with the plot?

If yes, make sure that
you defined the
window correctly

For instance, if you do
not correctly fill both
sides in the Edit Axes
Ticks list there will be
some funny grid
locations

Make also sure that the
data bounds ([-5,5],
[-10,10]) are defined in
the Axes Editor/Axes
Options window

Window Demo

I typed the wrong handle call gca(); and
Scilab crashed definitely. Reboot ...

Comment: multiple plots
with a single command

‘ m Itis possible to plot multiple
graphs with Sm.gl.e yl = 2%*sin(x) - 2; // First equation
command by defining the y2 = 2*cos(2*x) + 6; // Second equation

function arguments as plot2d(x,[y1',y2']) // Plot both
column vectors e=gce(); // Get Entity handle

e.children.thickness=5; // Polyline size
m Here is the modified plot /

command of the previous
window demo, compressed
to

plot2d(x,[y1’,y2’ 1)

m The result is shown here. —» .
Scilab automatically picks
different colors for the
graphs

Window Demo

m Scilab warns if the Graphics
Window is docked

PDr.EW I
Johnny Helkell

11. Flow control

Flow control (conditional
branching, programming) bring (e
important new structures

N\

Return to Contents

Introduction

m We have now come to the line that separates boys from men

Some examples using flow control (also known as conditional
branching and programming) have come up in the preceding
chapters, but the nature of conditional branch commands like if ...
then ... else has not been discussed*

m Flow control together with subroutines are needed for serious
practical simulations

m We shall therefore take a good look at the most important aspects of
flow control

m Note, however, that loop operations are slow. We should aim for
vectorized operations if a task requires a lot of loop iterations (there
is a brief discussion on the subject in Chapter 18)

*) Historical note: Konrad Zuse, the German who e first real computer
during WW 11 (using over 2000 relays because hendidtrust vacuum tubes),
got everything right except for conditional branghe

Flow control constructs

The following are main constructs that you should be familiar with:

Branch commands:* Comparison operators:

ENENCT TR
smaller than
greater than

for ... (if ... else) ... end
while ... (if/then/else) ... end
if ... (elseif ... else) ... end

select ... case (... else) ... end

break ... continue smaller or equal to
try ... catch ... end greater or equal to
I <> ~=
Logical operators: not equal to

& |and Logical/Boolean constants:

% or 4T

*) Rumor has it that Scilab will seeelect ... case renamedswitch ... case
In line with Matlab.

for ... end

+

m The for ... end loop repeats a group of statements a predetermined

number of times. The general expression of for ... end is:

// foo
end

for variable = initial_value:step:final_value

N

—~ No semicolon!

m As seen here; —»

“square” cannot
be used as
variable name
since square() is
a Scilab function

// for-end_demo.sce

// Compute the square root and square /
// of odd integers from 1 to 8 /

n=_§;

fork = 1:2:n
root = sqrt(k);
quadrat = k"2;
disp([k, root, quadrat])

end

1.7320508 9.

2.236068 25.

2.6457513 49.

for...if ... else ... end

+

m for ... end can be nested with if/else conditions to allow for
execution of alternate statements:

for variable = initial_value:step:final_value
if condition
// foo
else
// foo
end
end

m The next few slides demonstrate a case where random Gaussian
“||10|se” IS generated, sorted, and reported both verbally and with a
plot

for ... If ... else ... end:

+

Only variables, nothing
to comment

demo, script (1/3)

// for-if-else.sce

// The script generates Gaussian noise around a fixed signal.
// Each sample ("signal") is sorted according to whether it

// is within, above or below default variance limits (+/-1). The
// result is reported verbally with strings and is also plotted

clear,clc,clf;
// Define variables:

/] # of for...end loops
above = 0; // Signals above upper variance limit
below = 0; // Signals below lower variance limit
within = 0; // Signals within variance limits
ave = 3; // Mean (average)
X =[] /] x axis vector

for ... If ... else ... end:

demo, script (2/3)
+

// Generate signal:

Random generation dt Tj(getdgtcz%;l J<dt(0)+dt(10) % Get dfte .
. e g rand('seed’, +n)*dt(9)+dt ; Initialize random generator
as discussed before signal= ave + rand(1,n,'normal’); // Shifted Gaussian signal

// Sort signal:

forj=1:1:n
i if signal(1,j) > ave+1 then // Default variance = +/-1
Note hOW the Slgnal above = above + 1; // Count signal > mean+var
array IS read Eeemmae clseif signal(1,j) < ave-1 // Default variance = +/-1
e|ement_by_e|ement below = below +1; // Count signal < mean-var
else // If within variance limits

as j goes from 1 ton within = within + 1; // mean-var <= signal <= mean+var

end
end

for ... If ... else ... end:

d

+

Display on the

Console: Total, ——»
mean, and variance
limits

This particular form

of multiple plots was
discussed earlier and —
is worth keeping in

mind

emo, script (3/3)

// Display result:

disp(['Result from generating', string(n), 'Gaussian distributed samples'])
disp(['(signals) with mean =' string(ave) 'and variance = 1:'])

disp([' -' string(within) ' samples were inside variance limits,'])

disp([' -' string(above) 'above upper variance limit, and'])

disp([' -' string(below) 'below lower limit'])

// Plot result:

/] Array for x axis
yl = ave*ones(1,n); // Array for mean value
y2 = (ave+1)*ones(1,n); // Array for upper variance limit
y3 = (ave-1)*ones(1,n); // Array for lower variance limit
rect = [0,ave-4,n+1,ave+4]; // Set pot window
plot2d(x,signal,2,"011"," ",rect) // Plot samples
plot2d(x,y1,5,"000") // Plot mean value
plot2d(x,y2,3,"000") // Plot upper variance limit
plot2d(x,y3,3,"000") // Plot upper variance limit
legend('signal’,'average’,'variance');
xtitle("GAUSSIAN RANDOM SAMPLES','Sample #','Sample value')

for ... If ... else ... end:

demo, print & plot
+

IResult from generating 500 Gaussian distributed samples !

69.6% of the samples are
within £10 bounds. Quite
|- 348 samples were inside variance limits, ! ok for 500 Samp|es

I- 75 above upper variance limit, and !

I(signals) with mean = 3 and variance = 1: !

I - 77 below lower limit !
GAUSSIAN RANDOM SAMPLES

zignal

It can be seen
that there are one
or two samples
outside the £30
limit, as should be

‘..|lh.|l. “ .l| l.” |”“ l |, Jli... I f UL
;:l'l |I| H | 1Lk

i
g

Sample walue

-M" ' |"”‘ I h;“ l|‘l| w r rlllﬁllf

for ... If ... else ... end:
comments

+

Note how the random data is collected by the signal(:,n) array.
Compare this with the x = [x,k] construct that is used later in
connection with the discussion on break & continue

This example was a maddening experience: I just could not figure
out how to make the plot work. After hours of attempts I found the
problem: I had put the random function inside the for ... end loop

What kept me on the wrong track for too long was that the data was
collected correctly, but is was destroyed when it was brought outside
the for ... end loop. However, that did not happen if there was a
display command inside the loop. For instance, no semicolon after
signal(:,n). Speak of coincidences.....

The problem went away when I finally understood to separate data
generation from the data sorting loop

Lessons learned: Be careful with what you put inside loops

while ... end

+

m The while ... end loop repeats a group of statements an indefinite
number of times under control of a logical condition

m The general form of while ... end is;

while condition
// foo
// loop counter, i.e. count = count + 1;
end
-->k = 1;
m The code to the right determines from —->while 27(-k) > %eps
which value of k the expression >k =kl

2A(-k) <= %eps ~>end
m Be careful with condition, it can easily -
lock the simulation in an endless loop

while ... if /then/else ...
end

+

m The while ... end condition can be nested with an optional if ...
then ... else instruction:

while condition_1
if condition_2 then
// foo
else
// foo
end
// foo

end

m The function on the next slide is for a game in which the user should
guess a random number that the computer draws. The game finishes
only with the correct guess

while ... if /then/else ...

end: demo

+

// game.sci

// The function draws a random number in the /
// range [1,M] that the user should guess. /
// Game finishes when correct number is found /

clear,clc;

M=30; // Upper limit of numbers
number=floor(1+M*rand()); // Draw a random number
disp('Guess a positive integer in the range ');

disp([1,M]); // State range of random numbers
guess=input('You guess: "); /] User's guess

while (guess~=number)
if guess>number then
disp('Number is too big");
else
disp('"Number is too small');
end // End if-then-else
guess=input('You guess: '); // User's next guess
end // End while condition
disp('Correct!’);

[/ Start while condition
[/ Start if-then-else

Save the script, load it

into Scilab (on Editor),

type the function name
on the Console

-->guess_a_number
Guess an integer in the range

1. 30.
You guess: 15

Number is too small
You guess: 22

Number is too big
You guess: 17

Number is too small
You guess: 19

Correct!

Comments on
interactivity

m The previous demo showed examples of interactive use of strings
— To instruct the user:
disp(‘Guess an integer’)

— To accept user inputs:
guess = input(‘You guess:)

m To the user the input() prompt is not very clear since the text string
only pops up—it should at least blink. One must therefore try to find
expressive text messages. Perhaps the following would be better in
the previous case:

guess = input(‘Now, Sir/Madame, type your guess:)

m Interactive text strings is a simple form of human-machine
interfaces; Graphical User Interfaces (GUIs) more are advanced and
will be discusses in Chapter 15 (there was a case already in Ex 1-3)

foo ... do ... end

‘ m The do keyword can be used inside for and while instructions to
separate the loop variable definition (condition) and the instructions.
The keyword then can be used with if and while

m The following are examples of for ... do ... end and while ...
do/then ... end:

-->n=09;

& __>fork=1:1:3do -- -->while k <= 3 then &
->n=n-3 - .
-->end
n =

If ... (elseif/else) ... end

+

m The if statement evaluates a logical expression (condition) and
executes a group of statements when the expression is true

m The optional elseif and else keywords provide for the execution of
alternate groups of statements

if condition_1
// foo
elseif condition_2
// foo

If ... elseif/else ... end:
demo

The following function computes the n:th term of the Fibonacci sequence
when n is given:

Save the script, load it
// fibonacci.sci into Scilab (on Editor),
// Gives the n-th term of the Fibonacci / type _On the Cons_ole the
// sequence 0,1,1,2,3,5,8,13,... / function name with the
n argument (Hint: do
not use a large value!)

funcprot(0) /] Suppress redefenition warning
function [K] = fibonacci(n)
if n== // Begin if-elseif-else-end

K=0;
elseif n== // Condition to proceed, n > 2

K=1;
elseif n>2 & int(n)==n // Check if n is an integer >2

K = fibonacci(n-1) + fibonacci(n-2); // Compute Fibonacci #
else // Previous conditions not met

disp(‘error! -- input is not a positive integer'); // Error message

end // End of if-elseif-else-end
endfunction Check what
happens forn < 1

-->fibonacci(8)

ans =

13.

select ... case ... else ...
end

+

m The select ... case ... else ... end construct executes the first case
that matches the stated condition

m If no match is found it executes the else statement

m The advantage of select ... case ... else ... end is that it allows us
to avoid multiple if statements

select condition Hint: Use se!ect
f elseif -+ else
Ca/s/e ;O threatens to become
11 o0 too complex
'''''' Note: select ... case
else is called switch ...
// foo case in Matlab (may
end be changed in Scilab)

select ... case ... end:
demo, script

+

m Some textbooks on Matlab
presents this as the drunk
sailor problem. It

demonstrates a random // Creates a track of marks that proceed randomly
// in the x,y plane. The walk starts at the origin

Walk/ one fixed Step at a time // and proceeds for a predetermined number of steps /

// randomwalk.sce

u The whole process is // either up, down, right, or left
performed in a single
function (randwalk(steps)) clear,clc, cif;
that has to be executed from funcprot(0);
the C_0nSOIe] function randwalk(steps)
m In this case there is no x=zeros(1,steps+1); // Counter for x track
problem with having the y=zeros(1,steps+1); /| Counter for y track
g for k=1:steps
random generator inside the direction=floor(4*rand()); // Draw random move
for ... end loop select direction
m The script plots two marks case 0 then .
(0-) forpea%h step, although A i LSl
p, althoug V(k+D=y(K);
they cannot be distinguished case 1 then
on the plot on the next side x(k+1)=x(k)-1; /| Move left

y(k+1)=y(k);

select ... case ... end:
demo, script & plot

i i i h
After loading the script into N

Scilab, the function has to y(k;%%=y(k)+1; /] Move up
be run from the Console ke)ox(K):

y(k+1)=y(k)-1; // Move down
end

end
-->randwalk(1000) clf

plot(x,y,'o-"); /| Plot marks
endfunction

] The starting point
il is always the
St origin (I have run
this simulation
numerous times
and Scilab seems
to prefer to go in
the northeastern
direction)

break & continue

-->k =0;
-->while 1 == 1,

The break command: >k =k + 1;
; -->disp(k);
m break lets you exit early from a for ... _>if k > 6 then
end or while ... end loop, or from -->bredak
-->end,;

within an if ... end statement

m Execution continues from the line
following the end statement

-->end

_ -->for j = 1.2
m In nested loops, break exits only from : -->;<: IE]; 1
H -->Tor Kk = 1.
the innermost loop it keit] & ke=8 then
. -->continue
The continue command: . —>end
-->X = [XK];

m continue is a forced return to the start . _>end
of a for ... end or while ... end loop -
(not if ... end loops!)

m Statements between continue and the
end of the loop will be neglected

break: demo

Give amount of numbers to sum_3

Give next number_13

Give next number_17

Give next number_7

// break.sce v xtnu -
e 1A lated -f is: 37 !

// Input m positive integers that are summed / ccumtlated error-iree sum 1S

// up, but the program breaks if the input /

// is not a positive integer /

Give amount of numbers to sum_3
clear,clc; Give next number_17

Give next number_2
n = input('Give amount of numbers to sum_"); Give next number_-1

summa = 0; // Reset summa counter
fori= 1:n wrong-----negative value!
number = input('Give next number_");
if number < 0 // Condition: number ~< 0 IAccumulated error-free sum is: 19 !
disp(‘wrong negative value!');
break;
end
if number ~= int(number) /| Check if integer Give amount of numbers to sum_ 4
disp(‘wrong-----not an integer!"); Give next number_ 18
break; Give next number_ 3.3
end _
summa = summa + number; // Sum up wrong-----not an integer!
end
disp(['Accumulated error-free sum is:' string(summa)]); IAccumulated error-free sum is: 18 !

try ... catch ... end

m With no errors, the code between try and catch is executed

m If an error occurs, execution immediately shifts to the code between
catch and end:

try
// foo
// If an error occurs in this part....

catch
// execution continues here

// foo
end

m Typically the code between catch and end informs of an expected
error, e.g. disp(‘———-warning: cannot access the function-—--")

PDr.EW l
Johnny Helkell

12. Examples, Set 4

The first three examples relate
to Chapter 10, the rest to (@

Chapter 11

N\

Return to Contents

Example 4-1: step

+function, unit step (1/2)

m Step functions are useful in
many practical applications

m As mentioned in Ex 2-3, Scilab _
lacks a separate function for Unit step:
creating (unit) steps, but we Y 4
can form them indirectly (in Ex 14
2-3 it was done with a unit
vector)

m Here we shall look at two cases
where a step is needed

m In the first demo a step is 0,t<t
created with a user defined VOE
function that includes the sign() 1, t>t,
function (Help is of no help
here, you don’t understand
what it says about sign())

Ex 4-1: step function, unit
step (2/2)

// step_sign.sce
// Plot a sign() fucntion that is shifted by 1 / Note how the sign()

// & compressed by 0.5 to give a unit step / function is shifted (addition
clear,clc,cif; by 1) and compressed
funcprot(0); (multiplied by 0.5) to get

x = linspace(-5,5,400); the required unit step
deff('y=u(x)','y=0.5*(1+sign(x))") // Define sign() function,
// shift & compress as needed

+

rect = [-5.2,-0.2,5.2,1.2]; // Define plot frame . e
plot2d(x,u(x),5,'011"," ',rect) // Plot inside frame ! ! !
xgrid() // Add grid to plot o [

a=gca(); // Get axes handle

a.title.text="UNITY STEP"; // Add title . |
a.children.children.thickness=3; // Increase line thickness | oat---+------+------}------ B ERRREEE

Ex 4-1: step function,

+rectangular pulse (1/2)

s The second case is a Rectangular pulse:
rectangular pulse with Y A
amplitude A as shown in the Al
figure
m In this case we do it without a 0
user defined function, since it t, t,

leads to a simpler script

simplified somewhat

m The plot command can also be At st<t
y(t) = _
0, otherwise

Ex 4-1: step function,

+rectangular pulse (2/2)

// rect_pulse.sce

Note that the argument u() does
not have to be defined separately

) Plot a rectangular pulse with / rect can be defined even if style,
// width 3 < t < 5 and amplitude 2 / strf, and leg are absent

clear,clc,dlf; Thick figure lines & graph with
increased line thickness
t = 0:0.01:10;

deff('y=u(t)','y=1*(t>=0)"); ./ //(Define u(t)

y = 2%(u(t-3) - u(t-5)); // Definepulse | T 7~ 7"~ "a" i Tt T
plot2d(t,y,5,rect=[0,0,8,2.5]) // Plot

xgrid() // Add grid

f=gcf(); // Figure handle

f.children.thickness=2; // Figure lines

a=gca();

c=a.children; // Compound handle

c.children.thickness=3; // Line thickness osfF—-———-+T—-——-|--7=-—-F-——--7T--

Ex 4-1: step function,
comments

In the first case (unit step) the handle command for line thickness is

a.children.children.thickness=3;

In the second case (rectangular pulse) Scilab did not accept this
form and it had to be rewritten as

c=a.children;
c.children.thickness=3;

I have no idea why this is the case and Help certainly is of no help

In the latter case I happened to write the script without the deff()
function, and for a while everything came out all right. But when I
added handle commands Scilab decided that the variable u is
undefined. The KISS principle (Keep It Simple, Stupid) did not apply
in this case

+

Example 4-2: cones in a
3D space

This example is adapted from Chancelier et al., pp. 163-166

The script is quite complex with four subroutines and three separate
plotting structures, which makes it difficult to follow the transfer of
parameters. Changing an argument can have unexpected
consequences

Some aspects of the script have not been covered before and will be
left without detailed discussion here as well (see however Ex 4-3)

The object, a cone (the book mentions and shows a vase), is plotted
in three separate positions using lateral shifts, rotation, and non-
rotational dilation (homothety) of the objects

The cones are shaded using handles that are called through the
gce() command

Scilab functions used for the first time: diag(), eval3dp0),
graycolormap(), isoview(),* size()

*) The functionisoview() is obsolete. The Help Browser recommends
usingframeflag=4 instead.

Ex 4-2: script (1/4)
+ // cone_manipulation.sce

m verticall] tells how to // The script generates and plots a cone with its
o // tip at the origin. It plots two copies of the
oY anng the Z axis n // cone, one shifted and one shifted & rotated
later calculations. Note |7

decreasing values that
will cause problems for

shading // Vertical reach of 3D object:
I | tical=[0,1.0,1.6,2.5,2.2,2,1.6,0.9,0.5,0.3,0.3,0.4.0.6,1,1.4 .

1.7,0,0,0.1,0.4,0.8,1.1,1.4,1.7,1.9,2.2,2.4,2.7,3,3.3,3.7,3.91/2;

clear,clc,clf;

= The function cone()
generates the cone in
case. Example #12 // SUBROUTINE 1: Generation of 3D object:

discusses how it is done _ : _
\ function [x,y,z]=cone(reach,Z) // Generation of a 3D object

x=vertical(1,Z).*cos(reach) // Extension along x axis

y=vertical(1,2).*sin(reach) // Extension along y axis
z=vertical(1,2).*ones(reach) /] Vertical (z) axis
endfunction

Ex 4-2: script (2/4)

+

Lateral shifts of objects
are handled by the —»
function translation()

Non-rotational dilatation
of objects is the task of
homothety() —

rotation() creates a
matrix for rotating ——»
objects around the three
axes

Those are the four user
defined functions

// SUBROUTINE 2, Lateral shifts:

function XYZ=translation(vect,xyz)
XYZ=(vect(:)*ones(1,size(xyz,2))) + xyz // Translation vector
endfunction

// SUBROUTINE 3, Non-rotational dilation: (center =
// center of dilation, f = dilation factor)

function XYZ=homothety(center,f,xyz)
XYZ=translation(center,diag(f)*translation(-center,xyz))
endfunction

// SUBROUTINE 4, Rotation:

function XYZ=rotation(angle,xyz)
angle=angle/180*%pi; // Angle of rotation around axes
c=cos(angle);
s=sin(angle);
Rx=[1 0 0;0 c(1) s(1);0 -s(1) c(1)] // Rotation along x axis
Ry=[c(2) 0 s(2);0 1 0;-s(2) 0 c(2)] // Rotation along y axis
Rz=[c(3) s(3) 0;-s(3) ¢(3) 0;0 0 1] // Rotation along z axis
XYZ=Rx*Ry*Rz*xyz

endfunction

Ex 4-2: script (3/4)

+

eval3dp() transforms
the smooth surface that
cone() creates into a
composition of
quadrangular facets

»

Here we plot the basic
cone, which has its tip ™"
in the origin. The

exterior and interior of
the cone should have
sMGEEE g EES

Objects are manipulated
by vectors created by —»
the earlier user defined
functions

// ---- STEP 1: CREATE & PLOT BASIC CONE ---- //

// Superimpose rectangular facets:
[xv,yv,zv]=eval3dp(cone,linspace(-%pi,%pi,20),1:10);

f=gcf(); // Get Current Figure, create figure
f.color_map=graycolormap(32); // Select color

// Plot basic cone with tip at the origin:

plot3d(xv,yv,zv)

el=gce(); // Get Current Entity handle
el.color_mode = 24; /[Object exterior: light grey
el.hiddencolor = 30; // Object interior: dark grey
/[---- STEP 2: MANIPULATE & PLOT OTHER CONES ---- //

// Object manipulations parameters:

XYZ=[xv(:);yv(:);zv(:)']; /] XYZ = 3 x N matrix
XYZT=translation([1 3 -3],XY2Z); /] Lateral shifts
XYZH=homothety([5 7 -3],1.5*%[1 1 1],XYZT);

// Non-dilational rotation
XYZR=rotation([-15 15 30],XYZT); // Rotation

Ex 4-2: script (4/4)

+

Plot another cone, this
one is zoomed up and
sifted laterally. Same
shading as before

And the third plot, with
the cone shifted —
laterally and rotated.
Shading as before

Properties of the box
around the cones is
adjusted. Isometric
scaling is “on” (check —»-
with Help for an
explanation)

// Plot second cone (enlarged):

plot3d(matrix(XYZH(1,:),4,-1),matrix(XYZH(2,:),
4,-1),matrix(XYZH(3,:),4,-1))

e2=gce(); // Get Current Entity handle

e2.color_mode = 24; /[Object exterior: light grey

e2.hiddencolor = 30; /] Object interior: dark grey

// Plot third cone (rotated):
plot3d(matrix(XYZR(1,:),4,-1),matrix(XYZR(2,:),

4,-1),matrix(XYZR(3,:),4,-1))
e2=gce(); // Get Current Entity handle

e2.color_mode = 24; // Object exterior: light grey
e2.hiddencolor = 30; // Object interior: dark grey

// ---- STEP 3: ADJUST THE BOX ---- //
// Adjust Axes properties:

// Get Current Axes
a.data_bounds=[-3 -3 -3;33 3]; // Box dimensions
a.rotation_angles=[75 77]; // Rotation of the box
a.isoview='on'"; /] Isometric scaling

// ---- END OF MAIN ---- //

Ex 4-2: plot

m Original cone with
tip at the origin

m Second cone,
laterally shifted
and enlarged

m Third cone,
laterally shifted
and rotated

And the shading
of them is all
wrong. See
Example 4-3 for
an explanation

+

Ex 4-2: comments

Chancelier et al. have not documented their examples too well,
which in this case—together with errors in their solution—caused
major problems when I tried to understand the script. DO NOT
UNDERESTIMATE THE NEED TO DOCUMENT PROGRAMS! You may
be the one that suffers when your code has to be changed, years
after it was written

The first requirement of documentation is liberal use of comments in
the code

Among the handle commands are some that have not been
discussed before: f.color_map=graycolormap, el.color_mode,
el.hidden_color, a.rotation_angles, and a.isoview='on’ (recall
however the colormap command that was used in Ex 3-5)

Example 4-3: how to
generate a cone

+

m How was the cone in the ASREEEIRES
previous example
generated? The interplay

// A bare-bone eval3dp() script for plotting a 3D cone /

between the matrix clear,clc,clf;
vertical [] user defined vertical=[0,1,2,2.3,3,4]; /] Vertical reach of 3D object
14
function cone() , and function [x,y,z]=cone(reach,Z) // Generation of a 3D object
facet generation function x=vertical(1,Z).*cos(reach) // Extension along x axis
y=vertical(1,Z).*sin(reach) // Extension along y axis
eva_lSdp() are not too z=vertical(1,2).*ones(reach) // Vertical (z) extension
obvious endfunction
m Let's simplify the case to [xv,yv,zv]=eval3dp(cone, linspace(-%pi/1.5,%pi,20),1:5);
a bare minimum Bl piot3d(xv,yv, v theta=60,alpha=70) // Plot object
el=gce(); /] Get current Entity handle
u And IOOk at the result on el.color_mode = 24; // Object exterior: light grey

the next slide el.hiddencolor = 30; // Object interior: dark grey

+

Box alignment
defined by theta
and alpha in
plot3d()

Gap in the surface
due to the argument
linspace(—%pi/1.5,
%pi,20)

Ex 4-3: plot

Dark gray interior (el.hiddencolor = 30)

Light gray exterior (el.color_mode = 24)

Z. =3
Z, =223
Z, =2
Z,=1
Z,=0

Ex 4-3: discussion

+

m The cone is created by the linearly increasing radius R, of x and y:

X = R, .*cos(Z,))
y = R,.*sin(Z,)

If you change the first element in verticall] from 0 to 0.5, you'll see
that the tip of the cone is cut off

m There are six elements in the vector verticall |. The last one (4) is
never used since the third argument in eval3dp() is 1:5, meaning
that only the first five vector elements are needed. Hence the z axis
of the plot is [0,3]

m [left a gap in the perimeter of the cone to demonstrate the role of
the second argument in eval3dp()

m This example has correct shading of the object. The surface pattern
in Ex 4-2 is no artistic creation but messed up due to overlapping Z,
values

Ex 4-3: how to transform
the cone to a vase

+

m How do we create the // vase_creation.sce
vase that Chancilier et
al. talk about?

m Quite obviously, we

have to alter RZ In & vertical=[0,1,2,2.3,3,4]; >/ Vertical reach of 3D object
X= RZ.*COS(Zn) R_factor=[1,1,0,-1.5,-1,0]; /| Correction matrix

// A bare-bone eval3dp() script for plotting a 3D vase /

clear,clc,clf;

Y= Rz.*sin(Zn) «ll function [x,y,z]=cone(reach,Z) }/ Generation of a 3D object
. R=vertical+R_tactor; // Radius of vase, R=f(2)
u !—Iere |_S one W?y to CICV(x=R(1,2).*cos(reach) // Extension along x axis
It: by IntI‘Oducmg d y=R(1,Z).*sin(reach) /| Extension along y axis

z=vertical(1,2).*ones(reach) // Vertical (z) extension
endfunction

vector R_factor that

compensates for the
linear increase in RZ [xv,yv,zv]=eval3dp(cone,linspace(-%pi,%pi,20),1:5);

m And the result is shown plot3d(xv,yv,zv,theta=60,alpha=70) // Plot object

; el=gce(); // Get Current Entity handle
on the next S“de el.color_mode = 24; // Object exterior: light grey

el.hiddencolor = 30; // Object interior: dark grey

Ex 4-3: vase plot
|

Not bad, eh?

But I have no idea where
the pink & aniline colors
came from, they bumped
up when I executed the
script after Scilab had
crashed. The gray scale
returned after I reloaded
Scilab for a second time

Example 4-4: ballot
engine for politicians

m The function on the next two slides is a
ballot machine that help politicians
decide on how to cast their vote

m The number of issues to vote on is
entered and the code checks that the yes
number is a positive integer

m Scilab then draws random numbers
and transforms them to verbal votes
(yes/no/abstain)

m The votes are finally put into groups of
three

m The function demonstrates the use of no
select ... case ... end with a finishing
modulo() statement -->voting

. Give number of issues to vote on_-2.2
m It also shows the use of repeated if ...
end statements (necessary or not?) warning-----must be > 0

+

-->voting
Give number of issues to vote on_5

Now this is how you should vote:

no

abstain

Ex 4-4: script (1/2)

A good part of the
function commands
are related to
checking the validity
of data

The first check makes
sure that the number
en’(c)ered by the user is
>

The next check is to
make sure that n is an
integer

Pay attention to the
abort commands!

// voting.sci

// Ballot machine for politicians. The number /
// of issues to be voted on is entered and /
// Scilab tells how to vote on them. The /
// answers are presented in groups of three /

clear,clc;
funcprot(0)

function voting
// Give input and check entered number:

n = input('Give number of issues to vote on_");

ifn<=0do /] # of votings must be > 0
disp(‘warning must be > 0');
abort;

end

if n ~=int(n) do // n should be an integer
disp(‘warning not an integer!’);
abort;

end

Ex 4-4: script (2/2)

+

Generation of random
numbers in the similar
manner to Ex 1-3

Then a select ... case
... end construct that
transforms the
random numbers to
text strings

Finally the string
outputs are grouped
into threes. Pay
attention to how
handy the modulo()
function is!

// Create n random numbers 0,1 or 2:

dt=getdate(); // Get initial seed
rand('seed’,1000*dt(9)+dt(10)); // Seed random generator
votes = floor(3*rand(n,1)); // Generate votes (0,1, or 2)

// Transform random numbers to verbal votes:

disp('Now this is how you should vote:');
fork = 1:n
select votes(k)
case 0 then
disp(‘yes’);
case 1 then
disp('no');
case 2 then
disp(‘abstain');
end
if modulo(k,3)==
disp(*)
end
end

/] 0 =yes
// 1 =no
// 2 = abstain

// 3 votes given?
/| Leave space after 3 rows

endfunction

Ex 4-4: comments

+

m Scilab has several commands related to forced termination of
an ongoing process: abort, break, exit, quit, return,
resume. Check with Help for details

m In this example I had some problems with jumping out of the
program in the right manner:

— According to Help Browser the exit command should end the
current Scilab session—whatever it means. It turned out that
exit performs more or less like the break command by only
ending the present loop

— quit is a brute that closes down Scilab

— Trial and error showed that abort had the expected effect of
jumping to the end of the function

Good oldGO TOstatement, where have you been all these yeainsl why
do they give you such fancy names?

Example 4-5: nested
structures, script
... elseif ... else ... end // Climb up or down the scale depending on /

structure nested within an /AT E N QU DRV TS Ty
while end structure // the limits. The process ends when "e"is /

This script contains an if /I conditional.sce

. // pressed /
(read the title for an
exp|anation of what the §calf =[123456789]; ﬁ FI’)efin:: scaletto climb
. i=1; reset counter
SCI’Ipt dOES) strg="" /] strg = empty string
— while strg ~="e' // Until the "e" key is hit
Note how disp(scale(i,:)); // Display location on scale
: strg = input('Exit(e), Up(u), Down(d)?','string")
min() and yo; if strg == 'u' then // If "u" is hit
maX() ensure q!:) S Ii =.fmin(i+1, :s(;?clec(hscale,l)); ﬁ gnte:tzp Elpi‘_L;ntil highest
.. . elseif strg == en uti is hi
that Scale I|m|ts - q::) i = max(i-1, 1); // One step down, until lowest
are not Q - elseif strg == 'e' then /] If "e" is hit
exceeded c - break; // Jump out of the loop
| = else /| Whatever else is hit
disp('---incorrect input---') // Present error message
" end // End of if statement

end // End of while statement

disp('you hit e=Exit") /] Exit message

|
Exa m p I e 4- 5 u éxit(e), Up(u), Down(d)?u

strg =

execution :

2.
Exit(e), Up(u), Down(d)?u
strg =

u
The scale counter 1 is preset to

1 and increases/decreases Exit?é) Ui, BT
depending on the entered data strg = ’ |
d
Any input parameter except u,)
d, or e give an error message Exit(e), Up(u), Down(d)?6
strg =
6
;I;wh’ceh]i?c,rgsskecommand works well T T
2.
Exit(e), Up(u), Down(d)?u
strg =
Homework: Modify the script by using the u
select ... case ... else ... end structure 3
instead of if ... elseif ... else ... end. S'er"(f)’ Elp), Dewimiele
Which solution is simpler? o)

you hit e=EXxit

PDr.EW I
Johnny Helkell

T .
13. Doing math on

Scilab

Scilab contains functions for
sophisticated mathematics. We'll g
stay with the simpler cases

N\

Return to Contents

Math in earlier chapters

Chapter 3:

Chapter 4:
Chapter 5:

Chapter 6:
Chapter 7:

Chapter 8:
Chapter 9:

Complex numbers, vectorized functions,
polynomials

Trigonometric functions, random functions

Matrices, matrix operations, matrix operators,
symbolic computing, random generators

Linear equation systems with real coefficients

2D and 3D functions, vector fields, histograms,
rotation surfaces, logarithms, polar coordinates

Polynomial expressions
Application of matrices & trigonometric functions

Chapter 10: Arithmetic and algebra
Chapter 11: Logical expressions
Chapter 12: Step functions, application of 3D vector spaces

"Do not worry about your problems with mathematlcsssure you mine ar,

far greater.” Albert Einstein

e

optim() & fsolve():

+demo (1/4), the task

m The functions optim() and fsolv() give us tools by which to
investigate nonlinear equations and/or equation systems:

— optim() to find minima (and indirectly maxima)
— fsolv() to find solutions (roots) to equations/equation systems

m optim() is a quite complex function, which is evident in the Help
Browser’s confusing description. Here we shall stick to a basic case
by applying optim() and fsolv() to the equation

y = sin(x)/((x = 0.1)2 + 0.1)

m We solve the problem in two steps:

— First by plotting the graph to get better understanding of the function,
and simultaneously computing min and max values for y using optim()

— Then we apply fsolve() to compute exact root locations with the aid of
visual estimates from the plotted graph

optim() & fsolve():

demo (2/4), script
+

optim() requires a Scilab // optim_list.sce

subroutine of the type // Investigation of minima and maxima of the function /
[f,g,ind]=cost(x,ind). The 7/ Sin(x((x-0.1)"2+0.1) /
numeric value of grad is clear dle clf;

IEEYER // SUBROUTINES
e . \ e
Plotting is done with deff('[fun1,grad,ind]=costl(x,ind),... // Function

ﬂDOtZd(), which is quite 'funl=sin(x)/((x-0.1)~2+0.1),grad=0");

imil t lot2 d() deff('[fun2,grad,ind]=cost2(x,ind),... // Inverse function,
Similar to plo 'fun2=-sin(x)/((x-0.1)"~2+0.1),grad=0"); // note minus sign
I do not know why there) e MAIN =/
has to be a third numeric // Plot function:

argument in list(), Scilab
just requires something (I

) - rot2.d(x,cost1,5) // Plot function
tried and cried...) xgrid
The second argument of\ // Display min & max by calling subroutines:
Optim(list(),O) defines the // e .

. . disp(optim(list(NDcost,cost1,0),0)) // Display y min
_gradlent th_at WE are disp(-optim(list(NDcost,cost2,0),0)) // Display y max
interested in // ==-- END OF MAIN ---- //

fsolve() and optim():

demo (3/4)

m Her are the minimum
and maximum y el 21109214 max
values produced by
optim()

(sinGgy / (0e-0.1302+1)

s And here is the plot.
It is clear that it has
three roots

m The next task is to
locate the roots. For
that we must provide
approximate solutions
(e.g. -3,0,3 in this
case), based on which
Scilab computes an
exact solution for the
given neighborhood

fsolve() and optim(): demo
(4/4), solving the roots

+

m As said on the previous slide, approximate values for the roots are:

X1=-3,x2=0,x3=3

m With the script is loaded into Scilab, we find the solutions on the
Console using the command x = fsolve(x0,f):

-->x1 = fsolve(-3,costl)
x1l =

- 3.1415927

-->x2 = fsolve(0,costl)
X2 =

0.

-->x3 = fsolve(3,costl)
X3 =

3.1415927

Equation systems require
a different approach. See
e.g. Zogg, pp. 66-69

I said above that the Help
Browser is confusing when one
tries to find out something about
optim(). A better source is
Section 4.2 in Campbell et al.

fsolve(): limitation

+

The script below demonstrates that for values of point close to peak of
the sin curve, e.g. 4.6 or 8, Scilab cannot solve the root correctly

// fsolve.sce

/7 Solves, for the equation sin(a*x)-x*exp(-x), /
// the root closest to a defined point.

/7 Note: The selected point must not be too

/7 close to the midpoint between two roots

clear,clc,clf;
function y=myfunc(x)

a=1;
y=sin(a*x)-x.*exp(-x);
endfunction

x1=linspace(0,10,300);

plot2d(x1,myfunc(x1),5) // Plot function

plot2d(x1,zeros(x1),2) // Add y=0 graph

point = §; // Point of interest

[x,y]=fsolve(point,myfunc) // Def root closest to point .

plot2d(x,y,-3) // Add mark for root location Root mark in wron g place

Complex numbers:
demo, task

‘ C=-20Q
AY
/|

m Complex numbers
have not been

discussed at any
length before, so let’s 1129 R1 = on

look at a practical
problem

m Thetaskis tosolve %= #) “ 2=
the steady-state 1oofsov (7 Q R2=800 Q M) s00/0°v

currents iy, i,, and i,
in the shown circuit

m Recall Example 2-2 _
and write down the R2+L -R2 L
impedance matrix Z =—»[Z] = -R2 R1+R2 -R1
by inspection jL -R1 R1+jL-C

Complex numbers:

demo, equations

+

By plugging in numeric values we get the following state-space
equation [I]=[Z]-1[u]. Scilab does not have a function for shifting
between polar and rectangular coordinates, so we recalculate the
voltages manually (a rectangular-to-polar conversion routine is

included in the script), which is simple in this case:

i1
i2
i3

Note that u2 was selected opposite to ul, hence the minus sign
Scilab has no problems with doing inverse matrices but, as mentioned

80+j12 -80 -j12
80 100 -20
j12 -20 2048

-1

[0-j100
-500-j0

0+j0

before, left hand division (\) typically gives better accuracy

Complex numbers:

er

emo, script (1/3)

The initial step is as // circuit3.sce

Ex #5; the residual .
. // Complex mesh-current solution. The complex results are /
check is at the end of // converted from rectangular to polar values by computing /

the script // their magnitude and phase. The clean() function is used /

// to eliminate computing errors around zero. /
Now we have to et
transform rectangula
data to polar data // Compute complex currents:

] Z = [80+12*%i, -80, -12*%i;
The for --- end loop,is -80, 100, -20;
-12*%i, -20, 20-8*%:i]; // Impedance matrix

r_un through ;hree h u = [-100*%i; -500; 0]; // Voltage matrix
times, once for eac | 5= Fp // Compute i = Z\u

current (il...i3)

// Calculate magnitude and phase:

Comp_Utmg the magn_i = []; /| Define empty current matrix
magnltude IS phase_i = []; /| Define empty phase matrix

i forj=1:1:3 // Compute for three currents
straightforward B magn_i(j) = sqrt(real(i_n(j))*2 + imag(i_n())"2);
// Computes magnitude

Complex numbers:

demo, script (2/3)
+

B AT R // Calculate phase:

to be careful and if clean(real(i_n(j))) > 0 then // In 1st or 4th quadrant
consider all |phfsf‘i(j() = Ia(Fang?;?g(ian(j))/rjall(i_n(zj))c%*(120/;%'30;d .
: elseif clean(real(i_n < n 2nd or 3rd quadran
alternatives if clean(imag(i_n(j))) > 0 then // In 2nd quadrant
phase_i(j) = atan(imag(i_n(j))/real(i_n(j)))*(180/%pi) + 180;
= Note tha_t _the Z€Eero elseif clean(imag(i_n(j))) < 0 then // In 3rd quadrant
(0) condition gets a phase_i(j) = atan(imag(i_n(j))/real(i_n(j)))*(180/%pi) - 180;
margin fOI’ Computing eIsE DG, // On negative Re-axis
ase_i(j) = ;
errors through the end
clean() function elseif clean(imag(i_n(j))) >0 // On positive Im-axis
phase_i(j) = 90;
m Each time the for elseif clean(imag(i_n(j))) < 0 // On negative Im-axis
. phase_i(j) = -90;
end loop is run else // Origin: imag(i_n(j)) = real(i_n(j)) = 0
through, the matrix ; phase_i(j) = 0;
en
result() collects the result(j,) = [i_n(j), magn_i(j), phase_i(i)1;
data /| Matrix collects computed data

=]+
end

Complex numbers:

+demo, script (3/3) & print

m The result is displaye // Display summary:
with the disp()

command with
everything included in

the argument vector disp([currents, string(result(:,1)), statement,... // Display result
! .. tri lt(1:3,2)), stri lt(1:3,3
= Finally, the preliminary e =S)

result is checked // Check residual:
as before —_—

currents =['i1t=""2=""13="], // String matrix
statement = [' equals: ',’ equals: ', equals: ']’; // String matrix

disp(['CURRENTS IN COMPLEX AND POLAR FORM:']) // Headline

residual = clean(u - Z*i_n)' // Check initial results

m And the answer on the
Console:

]] CURRENTS IN COMPLEX AND POLAR FORM:
In plain English:
il = -14-%i*17 equals: 22.022716 -129.47246 !

il = 22.0 cos(wt - 129.5°) A - !

N2 = -15.2-%i*18.6 equals: 24.020824 -129.25584 !

12 = 24.0 cos(wt - 129,3°) A | |
|3 — 255 COS((Ut _ 7870) A N3 = 5-%i*25 equals: 25.495098 -78.690068 !

Numeric derivation (1/3):
derivative()

+

m The derivative of the function f(x) is -
defined as the limit /[derivative_l.sce

; _ 0 f(x + d) — f(x) // Derivative of sin(x)/((x-0.1)~2+0.1) /

f (X) - (}g([)l d // calculated at selected points /

m We can compute the numeric value of
f ‘(x) at a point x using the function

clear,clc;
funcprot(0);

deff(y=F(),y=sin(x)./((x-0.1)"2 + 0.1);

derivative({(x),x,opt(d))

. . . x=[-2-1012]; [/ Points of interest
where opt(d) is an optional step size. disp(["Point", "Derivative"])

However, Scilab’s Help Browser disp([x, diag(derivative(f,x))])
recommends using the default value

m To the right the derivative for the / IPoint Derivative !
earlier investigated function has been _

computed at five different points 0663016

m derivative() outputs a 5x5 matrix, in 90909091

which the diagonal is of interest . -0.3632083

Numeric derivation (2/3):

S

+

cript

This script that plots
the previous function
together with its
derivative

The equation and its
derivative are defined
with separate deff()
functions

fplot2d() accepts the
same multiple plot
structure as was used
earlier with plot2d()

children(2) and
children(3) are used
because children(1)
is reserved for legend

S

S

N

// derivative_3.sce

// Plotting f(x) = sin(x)/((x-0.1)"2+0.1) /
// and its derivative /

clear,clc,clf;
funcprot(0)

X = -5:0.01:5; // Area of interest
d = 0.001; // Step size

// Define function & derivative:

deff('y1=f(x)','y1=sin(x)./((x-0.1)~2 + 0.1)"); // f(x)

deff('y2=g(x)','y2=((sin(x+d)./(((x+d)-0.1)"2 + 0.1))...
-(sin(x)./((x-0.1)"2 + 0.1)))/d’); // F(x)

// Plot function & derivative:

rect = [-5,-3,5,11];

fplot2d(x,f,5,"011"," ", rect) // Plot function
fplot2d(x,g,2,"000") // Plot derivative
xgrid // Add grid to plot
xtitle('f(x) = sin(x)/((x-0.1)~2+0.1 AND ITS DERIVATIVE')
legend('Function f(x)','Derivative of f(x)")

a=gca();

a.children.children(2).thickness=2 // F(x)) thickness
a.children.children(3).thickness=2 // f(x) thickness

Numeric derivation (3/3):

plot
+

) = sin(Oi(e-0.172+0.1 AND ITSE DERIWATIVE

_|= Function fix)

= Derivative of f{x)
|

A lesson from doing
this exercise is that
two deff() functions
in tandem, i.e. one
for f(x) followed by
one for f'(x) that
utilizes f(x), does not
work. On the
contrary, the attempt
may cause Scilab to
crash

Pay attention to the legend command in the script. It comes before the
related handle statements, but Scilab does not complain. Beats me...

Numeric integration (1/6):
definite integral

m Consider the definite integral

-->deff('y=f(x)', 'y=6*x"2";

b
A = J’ () dx -.A>A_ = intg(-2,1.,f)
a
m To solve the integral, first define - —>deff(y=f(x), ‘y=sin(x)):
the function y = f(x), e.g. using | o
the deff() function TSI S

m The integral can then be
evaluated using Scilab’s intg()
function,* i.e.:

1.4142136

A =intg(a,b,)
*) The function
integrate() can be more ~>A=inig(0, 2:%pi, 0 Ny
. I--error
USEfUl IN SOME Cases. Convergence problem...

Check with Help

Numeric integration (2/6):
length of an arc

+

s The length of an arc f(x),
between points a and b, is given
by the definite integral

b -->deff('y=g(x)','y=sqrt(1+(x"2/8-2*x"(-2))"2)');
L= (@ +[f 0132 dx sL=intg(2.3,0)
L =
a
1.125
m Let's compute the length of -

-->L=intg(3,4,

f(x) = x3/24 + 2x! from x=2 to o WE49

X=3

1.7083333

m The task requires manual
derivation, which yields

f(x) = x4/8 - 2x2

Numeric integration (3/6):
double integral, principle

o Thhe 2flanction int2d (l) %omputes o, b
the area integral of a | = f dx|] d
function f(x,y) over a region j <aj ())> 4

consisting of N triangles ¢

m X and y must therefore be D=a,d C=b,d
defined through triangulation d+
matrices X and Y, after which ACD
the command is . ABC

[Lerr] = int2d (X,Y,f) , cd

and Scilab returns the , ,
integration variable I and an B b X
estimation of the error, err

(not mandatory) - - - -

a

m The triangles are ABC and ACD, X=|b

as shown in the picture. b
Triangle elements are inserted

column-wise in the matrices -

A=a,c B=Db,c

4 d DH
ABC ACD ABC ACD

+

Numeric integration (4/6):
double integral, demo

Let’s compute the double
integral

s T

J v cos() + x sin(y)

-

)
By looking at the integration
limits of the function we find

the triangulation matrices X and
Y:

00 /2 7/2
=ln n |, Y=|nl2 2n
n O 2t 2n

1

__>deff('zzf(x,y)', 'Z:y*COS(X)"'X*Sin(y)I);

-->X = [0 %pi %pi; O %pi O]
X =

0. 0.
3.1415927 3.1415927
3.1415927 0.

-->Y = [%pil2 Y%pil2 2*%pi; Y%pil2 2*%pi 2*%pi]’

Y =

1.5707963 1.5707963
1.5707963 6.2831853
6.2831853 6.2831853

-->[l,err] = int2d(X,Y,f)
err =

9.805D-11

- 4.9348022

Numeric integration (5/6):
double integral, plot

f,y) = y'cos(®) + xsinfy), with 0<x<%pi, %opi/2<y<2"%pi

The plot of {(x,y) = y*cos(x)
+ x*sin(y) is here done with
a separate script:

// double_integral_plot.sce

// Plot the function z = y*sin(x) + x*sin(y) /
// over the rectangle 0<x<%pi, %pi/2<y<2*%pi /

clear,clc,clf;

x=linspace(0,%pi,30); // Linear x axis
y=linspace(%pi/2,2*%pi,30); // Ditto y axis . .
[X,Y]=meshgrid(x,y); /| Surface mesh The figure has been edited
Z=(Y.*cos(X)+X.*sin(Y)); // 3D surface equation with the Flgure Editor
surf(X,Y,2) // Plot 3D surface
xtitle('f(x,y) = y*cos(x) + x*sin(y),... // Add title

with 0<x<%pi, %pi/2<y<2*%pi')

Numeric integration (6/6):
double integral, check

m We can check the computed
result using the other possible
triangulation

m Now we get the triangulation
matrices shown here

m Plugging these matrices
into the Console gives the
following result:

-->X=[0 %pi 0; %pi %pi O];

-->Y=[%pi/2 %pi/2 2*%pi; Yopi/2 2*%pi 2*%opi]';

-->[l,err]=int2d(X,Y.f)
err =

9.887D-11

& 49348022

D=a,d C=b,d

>

Il
A T YV
QO o O

<

Il
O o 0
O a0

Same result, but a small difference
in the estimated error

Ordinary differential

+equations (ODEs): ode()*

m This simplest call for solving ODEs is ode() that has the
general form:

y = 0de(y0,t0,t,f(t,y))

where
— y0O = initial condition (normally a column vector)
— tO = initial time (normally 0)

— t = vector of instances for which the solution has to be
computed, e.g. t = [0:0.01:10]

— {(t,y) = function for which the solution has to be found, often
stated as [ydot] = f(t,y). Here t is a scalar, y a column vector,
and [ydot] a column vector with values of the derivative

s ode() can also have optional arguments. See Help for
details

*) Sallet, G.:Ordinary Differential Equations with Scilab, <http://www.math.
univ-metz.fr/~sallet/ODE_ Scilab.pdf> is an “old” bgbod text.

First-order ODEs: demo

X + x2=t,

Let’s find the solution for the first-order homogenous ODE

with the initial condition x(0) = 1. Plot the solution for t € [0,20]

// first-order_ODE.sce

// Solve the equation x'+x"2 =t /
// for x(0) =0 y/

clear,clc,clf;
funcprot(0)

deff('y=f(t,x)",'y=-x~2+t") // Define function

t=linspace(0,20); // Abscissa
x=o0de(1,0,t,f); // Compute equation
plot2d(t,x,style=5) // Plot

xtitle("dx/dt + x~2 = t','t','x")

xgrid a=gca();

a.children.children.thickness=2

Start by rewriting the function as x" = -x2 + t
Note how X’ is designated y in the deff() argument

dufdt + 22 = t
-TrT-TTTTAaAT TS TTCS T, TTOTTrTTITT T o
1 1 1 1 1 1 1
U U U A S S

1
- =L

1

1
- =L

|
I

= rTr-TT-=-="°A1~=-=-""I===1=-=--rr=-
I

In this case Scilab does not accept
numeric arguments of children

Second-order ODEs:

introduction

m Scilab only supports first-order
differential equations—as do other
programs for numeric computing

m Higher order problems must be
reduced to first-order systems, i.e.
by shifting to state-space
representation

m The methodology runs according
to the algorithm shown to the
right

m A good treatment of state-space
methods is e.g. Chapter 8 in
Burns, R.S.: Advanced Contro/
Engineering, Butterworth-
Heinemann, 2001

Problem expressed a
second-order ODE

;

Select staltte variables

b

Substitute state
variables with zeroth-
order \{ariables

¥

Rewrite problem as
first-order state-space
equation system

¥

Solve using Scilab’s
ode() function

Second-order ODEs:

+RLC circuit (1/5), the task

m The task is to plot the output
voltage v, for the shown RLC
circuit, when R L

- U=5V 4_AAA_1"';q

— switch closes att =1
R=0.3Q UT—# v,(t) i@ C +;< \Vz(t)

L=0.5H)
C=08F

B ——

o
o

m We can derive the following
second-order ODE for the
circuit:

d=vy(0) dy(t)
mR G el - U U

LC

Second-order ODEs:
+RLC circuit (2/5), reduce

s Simplify the equation for clarity:

LCv," + RCv,” + v, = v,
m Select v, and its derivative v, as state variables, and substitute:
x, =v, and x, =v, (=x;")

s With v, substituted by u , the first-order ODE system becomes:

f

X, = + 0x;, + 1x, + Ou (simpler: x," = x,)
< 1 R 1
‘= - — X, - —/— X, + —u
= RC ! L 2 IC
s Which gives the state-space expression that we are looking for:
[xl’- 0 1 | _xl_ F O
1= 1 R T 1 [u
L | RC L JL 1 LLC,

Second-order ODEs:
RLC circuit (3/5), script

+

Recall the discussion
in connection with Ex
2-3: We are working
with a matrix
expression of the type

x = Ax + bu

All of these factors
can be seen here,
with x’ being denoted
ss and x substituted

by vy \

// RLC ODE.sce

// Simulation of a serfes RCL circuit with /
// 5V step input voltage at t = 1s /

clear,clc,clf;

// Define circuit components:

e e

R=0.3; // Resistance (Ohm, V/A)
L=0.5, //Inductance (Henry, Vs/A)
C=0.8; //Capacitance (Farad, As)

// Define space-state equations & input signal:

femmmnannansn st i s s

A =1[01; -1/(L*C) -R/L]; // System matrix

B =[0; 1/(L*C)]; // Input matrix
deff('[ut]=u(t)','ut=2.5%(1+sign(t-1))"); // Step input signal
deff('[ss]=RLC(t,y)','ss=A*y+B*u(t)"); // Space-state expression

+

Second-order ODEs:
RLC circuit (4/5), script

The ode() function
computes our

differential equation by

using the RLC state-

space expression of the

second deff() function
Calling parameters are
v0O and tO

Note the plot command

(new way of doing
plot2d()

Handle commands

come before the legend
(in this case Scilab gives
an error message if you

try it the other way)

// Compute using ode(), which calls previous deff() function:
fmasmnasmninn s R e e
out0 = [0;0]; // Initial output voltage & d(v2)/dt = 0
t0 = 0; // Initial time = 0

Time = [0:0.05:10]; // Time as abscissa

State = ode(out0,t0, Time,RLC); // State variable vector (v2,v2)

// Plot and add title & grid:

Jmasesnazsnnansnazsnasanassnass

plot2d(Time,[State',u(Time)']); // Note transposed arguments!
xtitle('Series RLC circuit with step input voltage',...

‘Time (s)','Input + Output voltage v2(t) & d(v2(t))/dt")
xgrid

// Edit plot:
a=gca();
a.children.children.thickness=2 // Make all graphs thicker

// Add legend (must come after handle commands):

mssnazmn s s e s e
legend('Output voltage, v2(t)','d(v2(t))/dt','Input signal’,4)

Second-order ODEs:
RLC circuit (5/5), plot

The plot shows that the
circuit is undercritically
damped. Change the
resistor value to 1.5 Q,
and it becomes critical. It
is overcritical for still
higher values of R

Handle commands could
be used to edit the figure
further. I did not do it
because the main point
with this demo is to solve
a second-order ODE

V) S d{u2(tNdt

m
m
=
=)
=
e
5
o
ey
=
=
+

Series RLC circuit with step inputwvaoltage

odeoptions()

The command
%ODEOPTIONS = odeoptions()

opens the GUI shown right. With o
the help of it you can change : cpton ncton e

parameters for solving differential v o
equations. Examples: L e @

terit {assumes itask=4or 5) [0]

e hO = size of first step o st s
 hmax = maximum step size S
e hmin = minimum step size i (o st 520 [
e mxstep = minimum # of steps ctype 012345 12

mxstep (max number of steps allowed) [500]
C h eC k W Ith H & 1[) fO r d eta I | S maxordn (maximum non-stiff order allowed, atmost 12) [12]
maxords(maximum stiff order allowed, at most 5} [5]
ixpr {print level 0 or 1) [0]

[ml,mu] - [[-1,-1]]

| Cancel | 0K |

PDr.EW l
Johnny Helkell

14. Examples, Set 5

The examples give additional
insight into working with math (@
on Scilab

N\

Return to Contents

Example 5-1:
solving an equation (1/3)

|

m This demo is based on Makela -->x = (0.01:0.01:8)";

m Let’s solve the equation -->plot2d(x,[log(x), x.A2-7*x+10])
INn(X) = x2-7x+10

m We begin by plotting it (note
how the multiple plot command
iS constructedsj

m The plot reveals that there are
two solutions, at x, = 2 and
X5 = 5.5

m You can see the roots more
exactly by using the Graphics
Window’s zoom function (next
slide)

Ex 5-1: solving an

+equation (2/3)

m The zoom function gives more precise values for the roots:
X, = 1.81 and x, = 5.49

m To improve the accuracy even more we can calculate the roots with
the fsolve() function (next slide)

Ex 5-1: solving an

+equation (3/3)

m fsolve() delivers the ultimate
answer —>deff(y=f(x)", 'y=log(x)-(x"2-7*x+10));

-->x1=fsolve(1.8,f)
x1l =

m We can also check the error of
the result. As shown, it is close
to zero @ 138132512

-->x2=fsolve(5.5,f)
X2 =

m |lessons learned: Precise zoom
in the Graphics Window

produces satisfactory accuracy @ 54881107

for most practical engineering

purposes (two decimals), _>f(x1),f(x2)

considering that an old ans =

engineering adage says that o s Check
factors that influences the result ans =

by less than 10% can be
forgotten

- 4.441D-16

Exxample 5-2: ODE,
+series RLC circuit (1/5)

m This example is a modification of
the earlier RLC circuit and its
second-order ODE

m However, we now want to define R L
the current i(t) and charge q(t) A A A (Y YY)
for a sinusoidal input signal and
initial conditions i(0) = 0 and g(0)
=0 @ |ut) i@

m Kirchoff’s second law gives: o

di(t) 1
: R=03Q
L— + Ri(t) +— q(t) = u(t
dt ' C () = u) L=0.5H
C=08F
where

u(t) = sin(5t)

t
. d
a=[i0dt o I -
: dt

Ex 5-2: ODE, series RLC
circuit (2/5)

m No substitutions are required in this case since g and its derivative 1
are state variables. The first-order equation system is therefore:

o,)
q =1
< 1 R 1

= - —q-—— i+ —
L IcT L L

m Which gives the following state-space expression:

q 0 1 q 0

= 1 R Tl 1 (u
i - — - — i —
L] L.C L L _ L L |

Ex 5-2: ODE, series RLC

circuit (3/5), script
+

// series_RLC_ODE.sce

// Simulation of the current i(t) and charge q(t) in /
// a series RCL circuit with sinusoidal input voltage /

// and initial conditions i(0)=0, q(0)=0. /
.] // Legend: ss = state-space /
There is nothing new
here compared to deraEely
the pI’EViOUS // Define circuit components:
RLC/second-order /] Resistance (Ohm)
ODE .5; // Inductance (Henry)

// Capacitance (Farad)

// Define state-space equations & input signal:

A=1[01; -1/(L*C) -R/L]; /] SS system matrix
B =[0; 1/L]; // SS input matrix
deff('[ut]=u(t)’,'ut=sin(5*t)"); // Sinusoidal input
deff('[ss]=RLC(t,y)','ss=A*y+B*u(t)'); // SS expression

Ex 5-2: ODE, series RLC

circuit (4/5), script
+

// Compute using ode(), which calls the previous deff() function:

The ode() is the

same as In the yU|; // Initial current & Charge =0
. ; // Initial time =0
Previous RLC case Time = [0:0.05:8]; // Time as abscissa
Y = ode(y0,t0, Time,RLC); // Y = state variable vector (i,q)
Check the plot // Plot current & charge:
\ 14
argu_ment 024 D plot2d(Time,Y',[2 5],'024"); // Plot state vectors, note transposed Y
and its effect on xtitle('Series RLC circuit with sinusoidal input voltage', ...
the plOt (next "Time','Current & Charge")

] xgrid
sl |de) legend('Charge, q(t)','Current, i(t)")

|

Ex 5-2: ODE, series RLC
circuit (5/5), plot

Series RLC circuit with sinusoidal input voltage

— Charge, g{t) |

1
Current, iit) |

1
Charge, gt) |

1
Current, ity |

This is the plot for the shown
component values. There are
initial fluctuations before the
situation begins to stabilize

m This is the plot for more

realistic component values of
R=3kQ,L=0.5pH andC
= 0.8 uF

There used to be problems
with the latter case (Scilab
5.1.1), but these have
obviously been solved

Example 5-3: System of

first-order ODEs
+

m This example is modified from Povy (pp. 66-67, Povy also has an
animation version on pp. 67-68, but it causes Scilab to crash). The
example finishes with and interesting plot2d() command

m The task is to plot the slope (vector) field for the following system of
first-order ODEs :

V= —x—y “::> y -1 -1y
together with a single phase portrait with the initial trajectory x(0) =
1 and y(0) = 1

m The script can utilize either the ODE system (as Povy has done) or
the state-space representation. We'll select the latter, in line with
earlier examples

Ex 5-3:
u // ode_phase_plane_m.sce
- // The scripts plot the phase plane of the
sc rl p /[equation system x'=y, y'=-x-y together with

// a single phase portrait that satisfies the
4~7 // initial condition x(0)=1, y(0)=1
clear,clc,clf;
The state-space function e
is named ﬁI’StOI’del”() // First order transformation:
The vector field is drawr\ A=1[01;-1-1]; /| State vector
with fchamp () deff('[ss]=firstorder(t,x)','ss=A*x");
o0 has Only - \ /| Create & draw slope (vector) field:
z = linspace(-1.5,1.5,10);
2::?';' I;qsgtn(aanqg)afi)ieiﬂ:: fchamp(firstorder,0,z,2) // Draw vector field
initial condition - x and // Create phase portrait:
y are renamed x(1) and // Initial condition
i t = linspace(0,30,300);
X(2) re_spectlvely, 2k [x] = ode(x0,0,t,firstorder); // [x]=state variable vector
shown in the arguments /] with x=x(1), y=x(2)

for plot2d() \ // Plot phase portrait on slope field:
plot2d(x(1,:),x(2,:),5,'004")

xtitle('Phase plane of dx/dt=y, dy/dt=-x-y")

|

Ex 5-3: plot

Ful plot ——- P lne oy, ey

Phase portrait
with initial

condition [1,1]
Zoomed center
area

.0.01 Q.00 0.01
. -0.01

P el Scilab does not put the “haircross” at
003 the origin, which is just as well

Example 5-4: Simpson’s
rule, the task

|

m This example demonstrates integration of double integrals using
Simpson’s rule for calculating double integrals

m Let’s first define a subroutine for
Simpson’s rule and then add code fixy) = y"cos() + xsing), with 0<x<%pi, %pir2<y<2 %pi
for the function, the area integral
of which should be calculated

m In this case we'll repeat the earlier
function

2t T

= | | (v cosx) +x siny)) dx dy
/2 0

but the script can easily be modified
for other algebraic expressions

m There are numerous variants of Simpson’s rule for double integrals
(for an accurate algorithm, see Faires, Burden: Numerical Methods,
3rd ed., Brooks Cole 2002). The one given on the next slide is based
on Urroz and known as Simpson'’s 1/9 rule

+

Ex 5-4: Simpson’s rule,
algorithm

AXAy n.m

(o
;ibﬂ
I
N

where we calculate our function f(x,y) in a rectangular domain R
= {a<x<b, c<y<d}

Here x is divided into n and y into m even parts, so that:

b-a d—-c
Ax = , Ay =
n m
Furthermore:
Sy =f iyt oy e e

4+ o+ o+ fi0) + 16 £,

1t1;

Ex 5-4: Simpson’s rule,
script

The script is built in four
steps:

// double_integration_simpson.sce

1. Overall headline
comments for the el // The program calculates the double integral of the /

program // function f(x,y) = y*cos(x)+x*sin(y); by calling the /
// subroutine simpson_double(x0,xn,n,y0,ym,m,f)

2. UDF declaration

followed by clarifying clear,clc;
comments T~ o .
unction [integral] = simpson_double(x0,xn,n,y0,ym,m,f)
3. Body of UDF (ﬂEXt // The function calculates the double integral of /
inde) // the function f(x,y) in the region x0<x<xn, /
// yO<y<ym using Simpson's 1/9 rule. The x-and /
// y- ranges are divided into n and m subintervals, /
4. The code for f(X,y) that // respectively, where both m and n must be even. /
caIIs the UDF (tWO indes // The function modifies m and n if they are odd /

down)

Ex 5-4: Simpson’s rule,
sc ri pt // Check that n and m are even, correct as needed:

if modulo(n,2) <> 0then // Check that n is even;
N n=n+1 // if not, add one
This is the body of the end
UDF if modulo(m,2) <> 0then // Check that m is even;
m=m+1 // if not, add one
. end
It starts by checking and /
(If necessa I"Y) correcting // Define x and y increments and region:
the input parameters n Dx = (xn-x0)/n /| Define delta x
and m Dy = (ym-y0)/m // Define delta y
x=[x0:Dx:xn] // Region and increments of x
Here we again meet the y=[y0:Dy:ym] // Region and increments of y
function feval(). It returns // Calculate double integral:
a matrix z(i,j) = T z=feval(x,y,f) /] Matrix z(i,j)=Ff(x(i),y(§))
! " Sij=0 // Initiate Sij
f(X(l)’y(J)) fori = 2:2:n // Sum Sij along x-axis
. forj = 2:2:m // Sum Sij along y-axis
Heart Of_ UDF: The double Sij = Sij + z(i-1,j-1)+2(i-1,j+1)+2(i+1,j-1)+2(i+1,j+1)...
summation that produces +§*(z(i-1,j)+z(i,j-1)+z(i,j+1)+z(i+1,j))+16*z(i,j)
S;; before forming the final e

IS (o]0 [uo]Ula=ge [Spql=sl M integral = (Dx*Dy/9)* Sij // Evaluate integral

endfunction

+

Ex 5-4: Simpson’s rule,
script & result

// Define integration parameters:

Now comes the function f(x,y)

that we want to integrate. We : ﬁ Lower II:oung ii:orx
o : . S [Upper bound for x

start by defining integration limits 11 # of subintervals of x
and steps y0 = %pi/2; /| Lower bound fory
ym = 2*%pi; // Upper b(_)und fory

An interesting problem emerges: m = 100; /| # of subintervals of y

How ShOL”d one deﬁne the Ca”ing // Define function & calculate integral:

argument f(X,y)? If it is entered T
_ . deff('[z]=f(Xx,y)','z = y*cos(x)+x*sin(y)");
as f(x,y)=y*cos(x)+ xxsin(y), I = simpson_double(x0,xn,n,y0,ym,m,f)
Scilab will complain that x and y/ messagebox('The result of the double integral is:...

. . . "+string(I
are not defined. The solution is) "I cilab Message %=

d S ff () The result of the double integral is; -4,93423023

And finally: the answer as _
displayed on the Message box _— e

(the last digit of the earlier demo
was more accurate) The exact answer is

-1%/2 = -4.934802199...

Ex 5-4: Simpson’s rule,
discussion

+

I had big problems with this one. Scilab repeatedly insisted on
coming up with the wrong answer. I tried to find the error in several
ways:
— Checked manually that the earlier answer (- 4.9348022, or —?/2) was
correct
— Changed trigonometric functions to exponential equivalents at no avail

— Checked the algorithm by comparing with solved examples from math
and Matlab books

Finally, when I plugged in the equation in the now several times
changed script, the result came out right. Most likely I had written
sin(x) instead of cos(x).....

Lessons learned: It's hard to see bugs in one’s own program

Another thing: The script uses nested loops (for 1 = ...; forj = ...; ...
end; end;). This should be avoided in Scilab as far as possible,
because the performance is poor in such cases

PDr.EW I
Johnny Helkell

15. Working with GUIs

The term GUI relates both to Scilab’s
embedded windows and to user

)) . . i@
defined interactive windows !

Return to Contents

+

Introduction

Scilab’s GUI interface was updated with version 5. Old tutorials (e.g.
Campbell et al.) are therefore of limited value

Brief discussions of GUIs can be found in Kubitzki and in Antonelli &
Chiaverini (you can read Scilab scripts in German and Italian even if
you don't speak the language)

Although the GUI interface has improved, the Scilab team still cannot
be proud of their achievement

GUIs is a large subject; the Help Browser identifies about 50 GUI-
related functions. We'll be able to cover only a part of them (as
always)

We have earlier seen cases with the dialogue box (x_dialog() in Ex.
1-3) and the messagebox (messagebox() in Ex. 5-4)

The first discussion below is about how to tailor Scilab’s windows

Following that we shall look at some user defined dialog windows. A
“real” GUI is presented in Example 6-1

Tailoring windows (1/2)

+

There are four main functions for tailoring either the Console or the

Graphics Window:
Addmenu (Kgwin>,button, | adds new buttons or menus in the main
<optional arguments>) and/or Graphics Window command pane

deletes buttons or menus created by
delmenu()

addmenu()

activates buttons or menus created by
setmenu()

addmenu()

deactivates buttons or menus created by
unsetmenu()

addmenu()

m The numeric gwin argument, if present, tells on which Graphics
Window the button should be installed

m The button argument is a character string that defines a shortcut on
the menu bar

Tailoring windows (2/3)

m Optional arguments are:
— submenus character string with names of submenu items
— action definition list of the type action=list(flag, proc. name)

m This is not the whole truth. The book by Das, which is a collection of
Scilab’s Help function texts, contains more hints

m As a demonstration of the above said, here is a command that adds
the menu Graphics, with submenus New Window and Clear
Window, to the Console’s menu bar:

~ Create

-->addmenu('Graphics',['New window','Clear window','Close window'])

-->Graphics = ['scf()",'clf()','xdel()']
Graphics =

H scilab Console

File Edit Preferences Control Applications 7 |_-[3raphi|:5.]

|SCf() le() Xdel() ! -* |E.I g'f;, m |“D_ By _-_ 'E e Mew window

Clear window

Closewindow

Tailoring windows (3/3)

‘ = You can convince yourself that the added Console menu works by

clicking on "New window” to open the Graphics Window and click on
“Close window" to close it again

m As the following steps we can deactivate the created menu by the
command unsetmenu() and delete it with delmenu():

H Scilab Cansale

File Edit Preferences Control Applications

Eu ﬁ-__] By = | = | 2

H Scilab Cansale

File Edit' Preferemces

Interacting with the
Graphics Window (1/4)

m Scilab has numerous commands for interacting with the Graphics
Window; among these are:

+

Waits for a mouse click, returns a) the number o

lick O window where the click occurs, b) position of th
RCUC click, and c) the number of the mouse button us¢d
(left, center, right)

xgetmouse () Returns the current position of the mouse

Sets an event handler for the current Graphics
seteventhandler () Window

seteventhandler (' ') | Removes the handler

m The script below is adapted from Help/xgetmouse. It draws a
rectangle on the Graphics Window. The rectangle starts off at the
location of the mouse pointer at the first click of the left-hand
button, and freezes the rectangle at the second click

+

Interacting with the GW
(2/4): script (1/2)

Look for a description of
data_bounds under
Help/axes_properties
(not very helpful)

According to Help/
xclick the first vector
element should be
numeric, but Scilab
requires a name

Look at the argumen
of xrect(), it is those
that we later play with

The third vector
element is set to -1, or
mouse pointer has
moved (see Help/event
handler functions)

// rectangle_selection.sce

// The script demonstrates the use of the mouse-related /
// commands xclick(), xgetmouse() and xrect() when they /
// are used to draw a rectangle in the Graphics Window /

clear,clc,clf;
// Initialize drawing process:

// Get current Axes
a.data_bounds = [0 0;100 100]; // Boundaries for x & y coordinates
xtitle('Click left mouse button & drag to create a rectangle. ...

Click a second time to freeze') // Display instruction
show_window(); // Put Graphics Window on top

// Start drawing rectangle in the Graphics Window:
/

[button,x_coord,y_coord] = xclick(); // Point of mouse button click
xrect(x_coord,y_coord,0,0)

/] Start rectangle at mouse pointer x & y coordinates
rectangle = gce(); // Get rectangle handle
mouse = [x_coord,y_coord,-1]; // Mouse pointer 1x3 matrix

Interacting with the GW
(3/4): script (2/2)

The loop starts by
checking the status

+

// Execute mouse commands for rectangle:

of the mouse. Recall while mouse(3) == -1 do /| Repeat until second click
from the DFEViOUS mouse = xgetmouse(); // Check mouse position
. x_coordl = mouse(1); // Mouse location in x-plane
5||de the vector y_coordl = mouse(2); // Mouse location in y-plane
mouse = [X_COOI’d, x_origin = min(x_coord,x_coordl); // Define x origin
coord.-1] y_origin = max(y_coord,y_coordl); // Define y origin
J— ’ width = abs(x_coord-x_coord1); // Define width of rectangle
. height = abs(y_coord-y_coord1); // Define height of rectangle
FoIIowmg that/ new rectangle.data = [x_origin,y_origin,width,height];

data are calculated // Change rectangle origin, width and height
for the rectangle end

The finishing touch is
to define new handle
values (see xrect()
arguments above)

The while-do-end loop runs forever unless
a second mouse button click changes the
condition mouse(3)==-1. Should a
timeout condition be added to the loop?

Interacting with the GW

+(4/ 4): what it does

1) The Graphics Window with
instruction pops up, as required by
the show_window() command

Graphic window number 0 =SR] X

2) Put the cursor somewhere,
click and drag, and click a
second time to freeze What do you do with this
feature? Beats me....

GUI demo 1: Introducing
figure() & uicontrol()

‘ m Here figure() generates the figure (opens
the Graphics Window), uicontrol()
creates the graphical user interface object
in the GW, and two of the items on the list
are highlighted with set()

m The central argument in this case is
'listbox’, which defines the list

i . S—— o
BB Graphic window number 1 E=RRe X

File Tools Edit ?

// ufcontrol-1.sce /
// A basic GUI exercise /
clc; xdel();

f = figure(); // Create a figure
h = uicontrol(f,'style’, 'listbox',.. // Create a listbox,...

‘position’,[50 300 150 100]); // h = handle Note the scrollbar, it POpS
1 . I 7 1 H [1
set(h,'string',"Alpha|Beta|Gamma.. // Fill the list up when the he| ht is too

|Delta|Epsilon|Zeta|Eta|Tau"); .
set(h,value',[13]); // Highlight items 1 and 3 in the list small (100) for all items

GUIs: pop-up window
functions

m Scilab has several commands for creating pop-up windows.
Note that x_message() is obsolete and will not work in Scilab
5.2 and later versions; messagebox() has to be used instead:

+

Command Feature

messagebq): Message presentation (see Demo 2, Cases 1, 2 & 7)
X_choos@ Alternative selectable from list (Demo 2, Case 3)
X_choiceg) As previous but with multiple choices (Demo2, Cake
x_dialog) Window with multtline dialog (Demo 2, Case 4)
X_mdialod) As previous but with multiple string parameters
X_matrix) Vector/matrix input window (Demo 2, Case 6)

list()* Creates a list of objects (Demo 2, Case 5)

*) Matlab’s struct() is also available in Scilab

GUIs: messagebox()

+

The syntax of the messagebox() function is the following:

messagebox (“message”, “title”, “icon”, buttons 1, “modal”)
Message that you *
want to convey / 1xn vector Of strlngs
with button legends
Box title (the
default is “SC|Iab “modal” tells Scilab to
Message”) Icon to be placed wait for user actions
in the box (otherwise 0 is returned)

7 \\

info”, “passwd”, “question”, and “warning”

Definable icons are:
“error”, “hourglass”, *

GUI demo 2: creating

+pop-up windows (1/5)

Case 1: Recall that this pop-up window
was created by adding the command

messagebox=("The result of the B scilab Message
double 1ntegra1 IS L Strlng(l)) at the The result of the double integral is: 4.9348023

end of the script of Example 5-4

Case 2:

Default icon

-->m = messagebox('Division by 0: Continue?','WARNING',['Yes' 'No')
m =

B WARNING

‘:, Division by 0: Continue?
LN
i

| Yes |! Mo |

Case 2 is wrong! The Yes/No buttons
have no meaning since the case is not
declared “"modal” and Scilab by design
returns the default zero (0)

GUI demo 2: creating
pop-up windows (2/5)

Case 3: x_choose() with four alternatives b Choose Mescage

Double-dick on one:

-->ans=x_choose(['Alpha’,'Beta’,'Delta’,’Gamma'],'Double-click on one:")
ans =

Gamma

2.

Case 4: x_dialog() with input transformed
from string to matrix

-->answer=evstr(x_dialog('Input matrix',['1 0';'0 1))
answer =

H Scilab Input Walue Reguest

Imput matrix
oy :

9. 8.
1. 2.
6. 5.

Change matrix as needed, click OK

GUI demo 2: creating

+pop-up windows (3/5)

// x-choices_demo.sce
Case 5: x_choices()

with four alternatives
clear,clc; for three cases

listl = list(‘"Food grading',3,['Excellent’,'Good','Passable’,'Poor']);
list2 = list(*Service grading',2,['Excellent’,'Good','Passable’,'Poor']);
list3 = list(‘Interior grading',4,['Excellent’,'Good','Passable’,'Poor']);
answer = x_choices('Grade restaurant food..)
service & interior', list(list1,list2,list3)) B scilab Choices Request

// Demonstrates the x_choices() command /

Grade restaurant food, service &interior

Food grading | Excellent ” Good | Passable

Pick your
choices, click
-->answer OK’ and

answer =

SErvice gra-:ling| Excellent || | Pazsable

Interior grading

Scilab returns
the answer as
a vector*

*) Scilab 5.1.1 returns the answer automatica
with 5.3.1 & 5.3.2 it must be asked forl{ad?)

GUI demo 2: creating

+pop-up windows (4/5)

. ﬂ Scilab Input Value Reguest |"‘€_5"’| .
Case 6: Compute determinant for a
matFIX A that |S glven by X_maU'IX(). Change matrix to nxn as needed
The assumption is a 3x3 identity matrix -]

5, 11, 10, &
; o a8 = a7
"]r —'I]f A

// x-matrix_demo.sce

// Demonstrates the use of x_matrix() /
Change (here to 4x4 Magic
Square) and click OK

clear,clc;

A = x_matrix('Change matrix to nxn as needed',eye(3,3));
det(A) // Calculate determinant

clean(det(A)) // Clean det(A) for small values ans =

- 1.450D-12
The answer is the same as earlierin _—"" [
Chapter 5. Problem: It works in Scilab 0.
5.1.1 but not in 5.3.1 and 5.3.2

GUI demo 2: creating

+pop-up windows (5/5)

Case 7: Create an info list of
beverage choices using list()
and messagebox()

-ﬂ SELECTION

-->pew = ['Beer','Wine','Brandy’,'Gin’','Water];

-->m = messagebox(‘'Pick beverage','SELECTION','info',bew,'modal’);

Here “"Brandy” is selected
and the answer returned*

*) Sameproblemrepeats.
Scilab does not return the
e answer automatically (in

-->r = messagebox('Pick’,'Title'," ',['1','2"],'modal’) . - - .
;= SC|_Iab 5.3.1itdid so Wlt_k
a simpler case, but not in
= 5.3.2 any more)

GUI: computer screen
size & color depth

+

m The computer screen size is needed if we
want to position a GUI at a specific position —>get(0,"screensize_px’)
in the field of view ans =

m For that we need information of the bod 0O

computer screen size. It can be extracted -->get(0,"screensize_pt")
with the argument screensize_xx. There ans =

are more alternatives for the _xx suffix, = EEEEEETIN:00
check Help/root_properties for details

-->get(0,"screensize_norm")

m Another alternative is the number of display ans =
color resolution bits. It can be found with 0. 0. 1. 1
the argument screendepth —» [
m These arguments are used with the function ik =

get(), meaning “find out.” See Example 6-1 24
for a practical case

GUI demo 3: opening a
+predefined GW, script

m This demo shows how to open a new Graphics Window with
predefined size and position

m The size is defined relative to the computer’s screen size in points

m The position in the middle of the screen has to be found by trial and
error

// screensize_demo.sce

/7 Opens a new Graphics Window with a predefined size & location /

clear,clc,clf;

screen_size = get(0,"screensize_pt"); // Find computer screen size
size_x = .3*screen_size(3); // -6*screensize_pt 3rd element
size_y = .5*screen_size(4); // 8*screensize_pt 4th element
h_graph = scf(0); // Open Graphics Window
h_graph.figure_size = [size_x size_y]; // Define GW size
h_graph.figure_position =... // Position GW in the...

[size_x/.6 size_y/1.15]; // middle of the screen

GUI demo 3: predefined
GW, screenshot

+

The small GW opens in
the middle of the
screen (the picture has
been compressed and
looks muddled)

Note however that the
GW size is not exactly
in proportion to the
defined ratio of the
screen size, and it also
changes if we select
screensize_px instead
of screensize_pt (the
location changes as
well)

GUI shortcomings

+

GUIs are not perfected in Scilab. The (messy) text on GUIs in
WIKI.Scilab.org/howto/ tells of very old bugs that remain unsolved

Apart from what is mentioned in Demo 2, Cases 5-7, and in the end
discussion of Ex 6-1, I have experienced problems with
— Demo 1, where the listbox may (or may not) flow over the window frame

— Ex 6-1, where the labels of the slider and first radiobutton sometimes
open with reduced font size

WIKI.Scilab.org/howto/ also mentions the following limitations:
— Scilab does not allow vertical sliders
— checkbox == radiobutton

— slider has only smallstep, no side arrows (and as I found out with Ex 6-1,
Scilab gets a lockup when I drag the slider)

— foreground color is always grey
— pressed radio/check always pale red (have not tried it)
— only pushbutton, radiobutton, checkbox, and slider support callback

The usual recommendation is to use Tcl/Tk when advanced GUI
solutions are needed—another program for you to learn

PDr.EW l
Johnny Helkell

+
16. File handling

We need file handling e.g. to
process measurement data

Return to Contents

File handling:
introduction

‘ m In engineering, data on external files often originate in automated
measurements. The data has to be read by Scilab before it can be
processed. We'll focus our discussion on this aspect of file handling

m Scilab has a set of commands for file handling, beginning with the
commands mopen() that opens a file, and mclose() that closes it.
Between those two we use e.g.:*

miprint, fprintMat() Write data to a filefprintMat() for matrix files)

mfscanf(), fscanMat() | Read a file fscanMat() for matrix files)

mseek() Move the pointer
menf() Check end of a file
size() Check size of an object

*) The full set of i/o functions (=60 in all) carellound undeHelp/Files:
Input/Output functions. Recall the relatetbad() function in Chapter 10.

File handling: demo 1
(1/5), introduction

+

Open write file: fd, path, name

Write data into file

Close write file, ‘w’

Y

Open file for reading, ‘r’

Define contents to read (whole fils

¥

Return pointer to beginning of file

| =4

Define data to read

Close file

In this demo Scilab creates the data
file that is then read; later we'll se
how to read from text files created
by other programs

Script sequences are shown to the
right. The script demonstrates the
use of the functions mopen(),
mclose(), mfprintf(), mseek(), and
mfscanf()

Pay attention to the following steps:
open as ‘W’ file, close ‘w’ file, open
as 'r’ file, close 'r’ file. The stack
pointer moves down as we write into
the file and must be returned to the
top before we begin to read

File handling: demo 1
(2/5), script

Create the text (.txt)
file with mopen(). fd
= file descriptor.
Note the argument
“w’ (“write”) that is
used to create a
new file

Then fill the file with
data (in this case
created by t) using
mfprintf(). Note the
odd argument

‘%6. 3f\n"' that
defines the outpu
size (explained
below)

// file_exercisel.sce

// The script demonstrates the process of 1) creating a text file
// on Scilab, 2) closing it, 3) opening it again to be written into,
// 4) writing the actual data into the file, 5) reading certain

// pieces of data from the file, and 6) closing the read file,

// Notice that both close operations are necessary!

clear,clc;

// Create and open a text file for the exercise:

fd = mopen('H:\Dr.EW\Writings\Scilab examples\file_exercisel.txt','w");

// Create data and write into the exercise file:

t=(1:1:18)"; // Integers from 1 to 18
mfprintf(fd,'%6.3f\n’',t);

File handling: demo 1

+

After that the file
has to be closed

Then opened again
to beread (‘'r)

D ——
Next we read in its
entirety (the -1)

But the pointer must
be returned to the
top..

before we can
define which data
we want to see = ——p

Finish by closing the
file (see below for
note on mclose()) —*

(3/5), script cont..

// Close exercise file:
mclose(fd);

// Open the exercise file for reading:

fd = mopen('H:\Dr.EW\Writings\Scilab examples\file_exercisel.txt','r");

// Read and format file contents:

contents = mfscanf(-1,fd,'%f") // -1 means entire file contents

// Return position pointer to file beginning:

mseek(0,fd) // Following mfscanf(-1,,) the pointer is at the end

// Read some data from the file:

five_data = mfscanf(fd,'%f %f %f %f %f") /| First five data

three_data = mfscanf(fd, '%f %f %f") // Next three data

[n,data_9,data_10,data_11] = mfscanf(fd,'%f %f %f")// Three specific..
[/ elements

// Close the file:

mclose(fd)

File handling: demo 1
(4/5), the .txt file

Mame Date modified
BWic-toc 1 12.10.2008 16:00
Btic-toc.2 12.10.2009 16:09
.tir‘n E_Space |
Folders .triangl&_area file_exercisel - Motepad 5= (o]: i S|
1.| s Removable Disk (H:) =:J-IaL:IEiI: :;.lz:jn: n -m =

. TUZCTLOCRe i |
. vector_field |
tfocuments
e C_J r.n 2 indocw_demo.scy
Br.EW
Adrministraticg

. D00
. 000
. 000
. 000
. 000
Seminar material -) L 000

L, b L R e

L

R R

D5 Visio

Writings

105 items

. 000
. 000
. 000
0. 000
7.000

Scilab has put the text file where it was told eSS
to, on the H: drive. Check with Notepad

+

File handling: demo 1

The defined read
variable contents
brings up the
contents of the
text file on the
Console

We can then pick
out specific
elements from
the list

(5/5), check

-->contents
contents =

1.
2.
3.
4.
S
6.
7.
8.
9.

-->five_data
five_data =

1. 2. 3.

-->three_data
three data =

6. 7. 8.

-->data_11
data 11 =

11.

>N
n =

3.

-->data_9:11
ans =

9. 10. 11.

The variables
five_data ,
three_data , and
data_11 were
defined in the
script

n is the # of
elements (-1) in
the vector it
belongs to (4-1)

We can also
address specific
elements in the
column vector
and get the
answer as a row
vector

Spreadsheet data (1/7):

Creating data
+

[| SClIab dOeS not interface directly |TE| file_spreadsheet demo5.ods - LibreCifice Calc
with spreadsheet programs. The File Edit View Insert Format Tools Data Window

data has to be saved as a text B-BERe@yc s
ﬂle CE | Aal E 10

m [started with the new kid on
the block, LibreOffice Calc. The
data is the output from an
indoor/outdoor temperature
measurement

m The process of saving LibO and
OOo data as a .csv text file is
explained later

m If you do it in Excel you just
save it as Text (Tab
delimited). Do not select
Unicode Text because Scilab
cannot read it

Spreadsheet data (2/7):
Data saved as .csv file

m And here is the LibO data saved as
file_spreadsheet_demob.csv and
seen in WordPad (the figure 5 reflects
the fact that it is my fifth attempt to
get it right)

File: Edit Miew Insert Format Help

D H SR # & =@ §

m Let’s see if Scilab can read the .csv
file. There are two command options:

— M = fscanfMat() for a matrix of real
numbers (text data is ignored)

— [M,text] = fscanfMat() for a string
matrix

m The output for both alternatives are
shown on the next slide :

For HE|E,._'b

m After that we can write a script to plot
the data

Spreadsheet data (3/7):
.csV file read by Scilab

+

-->M = fscanfMat('l:\file_spreadsheet_demo5.csv') [G/teXt] = fscanfMat()
M =

-->[G,text] = fscanfMat('l:\file_spreadsheet _demo5.csVv')
text =

“Reading” “Outdoor” “Indoor”

S0l SO R ORI

:Z;: Note: If you work

-8.3 with MS Excel you use

e of course the ending

33 Ixt instead of .csv
-1.9 (CSV stands for

0.1
19 Comma Separated

0.4 Variable)

M = fscanfMat()

WoNokWNE

-2.1
- 3.6

Spreadsheet data (4/7):

Jrscript for plotting (1/2)

// spreadsheet_data_plot.sce

The fscanfMat()

command cannot be // The script reads data from the test file /

- // file_spreadsheet_demo5.csv, determines its /
Spllt OI’.1 tWO FOWS // length,and plots its two measurement sets /
(even if it is not

needed in this case) clear,clc,clf;

// Open the file, determine number of rows,
// and form vectors of its columns:

The size(hame,’r’)

function is used to
data_file = fscanfMat(IH:\file_spreadsheet_demo5.csv");

determine the number _

of matrix rows /] Opens text file

rows = size(data_file,'r'); // Determine number of rows

. readings = data_file(:,1); // Column 1, reading # (redundant)
Matrix columns form outdoor = data_file(:,2); // Column 2, outdoor temperature
sepa rate vectors e indoor - data_file(:,3); // Column 3, indoor temperature

Spreadsheet data (5/7):

+script for plotting (2/2)

The plot command uses the
obsolete plot2d() syntax
that we have seen before.
// Assume outdoor temp always lower

The reason fOI‘ haVing it // than indoor and form plot commands:
here is that plot2d() with

ymin = min(outdoor); // Determine min temp
the frameflag argument of ymax = max(indoor); // Determine max temp
the new syntax does not dy = (ymax-ymin)/10; // Define frame margin

rect = [0,ymin-dy,rows+1,ymax+dy]; // Define plot frame
work when two graphs X = linspace(1,rows,rows);
should be fused into one plot2d(x,indoor,5,'011'," ",rect) // Plot inodr temp

. plot2d(x,outdoor,2,'000") // Plot outdor temp
p|0t. The second plOt xgrid(1) // Add grid
destroys the first one, and xtitle("TEMPERATURE MEASUREMENTS','Reading #',...
. ‘Temperature, deg C')

when the rect argument Is legend(‘Indoor temp','Outdoor temp',4)

included Scilab responds
with an error message
(know it, tried it)

Spreadsheet data (6/7):

plot
|

Simple plot, but the TEMPERATURE MEASUREMENTS
main point with this
exercise is to show
how to go from
spreadsheet data to

a text file and then to T

plot the data g

And then we turn to 5

the question of how 3

to create text files " ' : , : .

with LibreOffice Calc) | : i i E—
and OpenOffice.org 10 ' ' ' ' Outdoor temp

Calc (next slide)

Spreadsheet data (7/7):

+Text data in LibO & 000

] Have As

)= |em » Computer » UDISK25X @) » [4 ||| seare Save as Text CSV (.csv)

and select Tab in the Field
delimiter dropdown menu
g of the window that opens.
e That' S |t

S
File name: file soreadsheet demob

Save as type: | Text 5V Lesw)

Export of text filas

Field options
- iz LLE N A A ==
Character set Western Europe (Windows-1252/WinLatin] > |;
Field delimiter | I
Text delimiter

[¥] Save cell content as shown

] Fixed column width

| 11801206
12 191.221.1

The saved .csv file looks messy / ‘ 3]100.421.3

if you open it with Excel, but it el

is ok in Notepad and WordPad |16

| 47

mopen()

+

s The mopen() function is of course more intricate than what one can
understand from the discussion above. Forgetting binary and text
files, the general structure of mopen() is:

[fd <,err>] = mopen(file_name <,mode>)

where
— file_name is the entire path of the file, including its name

— mode defines what to do with the data, e.g.:
m 1, read an existing file
m W, create a new file & write into it, alt. overwrite data in existing file
m a, append, open a file and add data to the end
— fd, file descriptor, temporary name of the file
— err, error parameter. err = O if the file is successfully opened, err <> 0O
if file opening failed (merror() is a function related to the err argument)
m [t can be a good idea to check the err parameter after a file has
been opened (has not been done in Demo 1)

mclose()

m A file that has been opened with mopen() should be closed with the
mclose(fd) command even if it is automatically closed when Scilab

closes. However, pay attention to the following ambiguous statement
in Scilab’s Help Browser:

“mclose must be used to close a file opened by mopen. If fd is
omitted mclose closes the last opened file.

Be careful with the use of [mclose(‘all’)] ... because when it is used

inside a Scilab script file, it also closes the script and Scilab will not
execute commands written after mclose(all’).”

mfprintf(), fprintfMat()
+

m The mfprintf() command is used to convert, format ,and write data
in an opened text file

m The general structure of mfprintf() is:

mfiprintf(fd, <text a> format_1 <text b> format_2
<text ¢> format_3...”, value_1, value_2, value_3...)

s Which means that each value that we want to print is declared with
an optional text, the format to be printed in (both within a single pair
of quotation marks), and the value to be printed

m Format declarations are given on the next slide

m The format demo two slides down should give a better grasp of what
it all means. If you ask me, it looks really messy...

m The fprintfMat() command is used to write a matrix in a file. See
Help for details

Format definitions

+

m Recall the arguments '%6.3f\n" and %f in File handling Demo
1. They are part of a set of format definitions:

— %.d for integers (e.g. 1230)

— Y%f for floating point presentation (e.g. 12.30987)
— %e for exponentials (e.g. 1.2345e+002)

— Y%s for text (string) presentation (e.g. Hello World!)

— 9%06.3f to define the output size
m the 6 is for the total number of figures
m the 3 is for the number of figures after the decimal point

— \n “go to a new line”
— \t “use a horizontal tabulator”

m Some definition combinations, like %6.3f\n, are possible

Format demo:
script (1/2)

This demo aims at clarifying the use of format declarations:

// file_format_demo.sce

// Demonstrates the use of mfprintf() format definitions. /
// Pay attention that with several variable to be printed, /
// all formats are declared (inside a single pair of citation /
// marks) before the variables are defined. /
clear,clc;

/] Create a new test file for writing:

fd = mopen('H:\Dr.EW\Writings\Scilab examples\file_format_demo.txt','w');

// Some variable to play with:

A = 123.45678901,;

a=0.3; S :

b = 1.23e-02; Just initial declarations here.

c = a + %i*b; The real stuff is on the next slide
text = 'Hello World';

Format demo:
script (2/2) & text file

// Several outputs to be demonstrated:
SR No optional

mfprintf(fd,'%d\n %10d\n %20d\n %8.4f\t %8.4f\n %5.2f\t %5.2f\t %5.2f\n’,... text is USECI
AAAAAAAA);)

mfprintf(fd,'%d\n %f\t %e\n %10.3f\t %6.2f\n complex = %3.4f + i%3.4f\n\n',... IN any of
AAAAA, real(c), imag(c)); the cases

mfprintf(fd,'%e\t %5.2e\n %s\n %5s\t %10s\t %15s\t %20s\t\n',...
AA, text, text, text, text, text);

+

/| Close the opened file:

S You have to be very
| file_format_demo - Notepad Ca rerI tO get |t rlg ht. .

Eile Edit Format Wiew Help

Fed Fod b=
L Lt B

Remember
to close!

M

+ M

it Fed

Hello world Hello world

mfscanf(), fscanfMat()
+

m We used mfscanf() in Demo 1 to read (scan) data from a file. Two
examples of its use:
— contents = mfscanf(-1, fd, ‘%f’). With this argument it reads the whole
contents of the file and formats it
— four_values = mscanf(fd, ‘%f %f %f %f’). Reads the four first data in
the file
— After reading data, the stack pointer remains where it is and we must use
the mseek(n,f) command to shift it to a new location. The first row in
the stack is numbered 0, as indicated by mseek(0,fd) in Demo 1
m In the discussion of spreadsheet data we used the fscanfMat()
function to read the data contained in a .csv file. The function has
two alternative call sequences:
— fscanMat(filepath,<opt_arg>) to read the numeric part only of scalar
matrix data in a text file
— [M,text] = fscanfMat(filepath,<opt_arg>) to read the data and include
the first non-numeric lines
— The default optional argument is % 1g. Check with Help for other options

PDr.EW l
Johnny Helkell

+

17. Animation

A brief introduction to creating
dynamic graphics @

Return to Contents

+

Introduction

Animations are a sequence of plots on the Graphics Window;
executed by showing a plot, freezing it while an incremental shift is
being calculated, and then swapping the old plot for the new one.*
With correct speed and increments it gives the illusion of continuous
movement

There are two main modes for creating animations:

— Real time mode. The animation runs while the script is being executed,
with the speed being determined by the incremental shifts and computer
speed. The execution can be influenced (slowed down) by the
realtimeinit() and realtime() functions

— Playback mode. Possible in Matlab with the getframe and movie
commands, but Scilab lacks this alternative
A tool for producing animations is the pixmap handle command and
the show_pixmap() function. Example 6-2, however, does not use
the pixmap command

*) Unless one wants to retain the whole sequerse) Example 6-2.

Demo 1 (1/4): Introducing
pixmap & xfarcs()

m This demo is adapted from Antonelli & Chiaverini. It exhibits in
particular the pixmap and show_pixmap() pair of commands

= pixmap="on”/"off”
— The pixmap mode* is used to achieve a smooth animation. With the

handle command pixmap="“on” the display is refreshed only when called
on by the command show_pixmap()

— Compare this case with the drawlater() - drawnow() pair in ordinary
plotting
m The script uses the xfarcs() function to fill the moving pie. Related
Scilab functions are xfarc(), xarcs(), and xarc()

m xfarcs() is used instead of xfarc() because the latter has no
provision for defining plot color by arguments, and its Axes handle
gca() does not recognize any children that would allow colors to be
defined

*) Also called “double buffer mode” because the pietis first created in on
buffer before being pushed to the second (the Geaindow).

Demo 1 (2/4
pie, script

+

Missing X and y values are
substituted by (%nan)\

Only frameflag=3 works\

this case \
Note the imaginary values

of thetal & theta2. Their
relative values (2 & 10m)
determine the five loops
that the pie makes before
finishing the full circle

xfarcs() requires six
vector values as its
argument. The color code
is optional (the default
color is black)

// animation_ball.sce

// Creates a cut pie that makes 5 loops while /
// moving around a circle. Demonstrates the use of /
// the pixmap - show_pixmap() pair of commands, /
// and the use of xtarcs() in drawing /

clear,clc;

steps = 250; // # of animation steps
rl1 = 0.5; // Pie size
r2 = 0.5; // Loop size
f = gcf(); // Figure handle
f.pixmap = "on"; // Create before display
for i=1:steps
cf(); // Erase pie after each step
plot2d (%nan,%nan,frameflag=3,.. // Define figure
rect=[-2,-2,2,2],axesflag=1)
xtitle("MOVING PIE");
thetal = i*2*%pi/steps;
theta2 = i*10*%pi/steps;
¢ = [cos(thetal)+r2*cos(theta?),.. // Define pie..
sin(thetal)+r2*sin(theta2)]; // position
xfarcs([c(1)-r1, c(2)+r1, 2*r1,... // Plot pie,..
2*r1, 0, 360*48]', 2); // color=2
f.background = color('grey");
show_pixmap(); // Display created graphics
end

f.pixmap = 'off’; // Exit pixmap mode

Demo 1 (3/4): moving
pie, frozen plot

5- Gri;phic window number 0
Eile Tools Edit 2
s it !]

Here is the blue pie in its
combined start and finish
position

The completion of the full
circle in 250 steps takes about
10 seconds with my 1.6 GHz
dual-core processor

Demo 1 (4/4): discussion

s Odd things happened while I tried to get this one going

m The Graphics Window mostly opened as shown above, but I have
also seen a black ball (that was before I changed it to a pie) on a
red background surrounded by a yellow frame topped by a red
title—with the animation running just as smoothly as it should

m When I changed frameflag=3 to frameflag=2 the dot rotated
around to the lower left-hand corner, and when I changed back
again Scilab told that the handle is not valid any more. Just go on
and reload...

m I also saw the size of the Graphics Window change from execution
to execution for no obvious reason

m In short, these events give the feeling that animation—together
with GUIs—is not a top priority of the Scilab team

Demo 2 (1/2
rectangles

m This demo is adapted from
Chancelier et al.

m It's an attempt to
demonstrate the use of the
XOR command in /
f.pixel_drawing_mode=
‘xor’, here NOR instead of
XOR for reasons told below

m The rectangles move on top/

of a grey background

m The rectangles are drawn
with xfrect() without color —»
code, they are therefore
black

m The rectangles move
diagonally from corner to —*
corner in 200 steps

// animation_rectangles.sce

// Two rectangles slide diagonally over the Graphics /
// Window. As they slide over each other their colors /
/7 are NORed. The solution is only partly successful /

clear,clc,clf();

f=gcf();

f.pixmap='on’; // Double buffer mode
f.pixel_drawing_mode="nor"; // NOR mode
f.background=color("lightblue");

ax=gca();

ax.data_bounds=[0,-4;14,10]; // Plot limits
ax.margins=[.1 .1 .1 .1]; // Plot framed
ax.background=color("lightgrey");

max_pos = 10; // Max position of rectangles

k=%nan; // Auxiliary parameter
xfrect(k,k,4,4); // First black rectangle

el = gee();

xfrect(max_pos-k,max_pos-k,4,4); // Second rectangle
e2=gce();

for k=linspace(1,10,200) // Animation loop
el.data(1:2)=k;
e2.data(1:2)=max_pos-k;
show_pixmap() //Show double buffer
end

Demo 2 (2/2): frozen plot

Here is the animation in progress.
The NOR function does its job, but
otherwise something is quite
wrong: We do not have black
rectangles moving across a light
grey background

The problem is that the command
f.pixel_drawing_mode="nor’
operates on the whole screen, not
just on the moving rectangles as
intended by Chancelier et al. For
that reason the XOR operation
they use is even worse than NOR

I decided to leave the demo in this
state. Those who are interested
can find a better solution in Steer’s
Scilab Graphics, p. 28

Demo 3(1/3):a 3D

0

+

Now we'll look at a
geometrically more
challenging object, a 3D
plot that moves both in
azimuth and elevation

Data bounds are not
defined separately, they are
changing with surface mesh
resolution

The first plot command
only defines axes labels

bject, script (1/2)

// rotating_surface.sce

// The 3D surface is first rotated and then /
// tilted, after which its position is locked /

clear,clc,clf;

// Initialize:

f=gcf();

f.pixmap="on";

clear_pixmap();

t=%pi/20*(-20:20); // Bounds & mesh resolution

// First plot command, defines labels:

Jmaesnansnansnansn i
plot3d1(t,t,sin(t)*cos(t),%nan,%nan,..
'X_axis@y_axis@z_axis');

Demo 3 (2/3): a 3D

+

m The surface rotates around
the z axis, starting at 45°
and finishing at 1009, while
the tilt angle is constant at
450

m When finished rotating, the
surface tilts around the x
axis from 45° up to 8069,
with the rotation angle
constant at 1000

s With my 1.6 GHz laptop the
animation does not run
perfectly smoothly, the
jumps from step to step are
noticeable

object, script (2/2)

// Set speed and turn object:

emmmnannazsnnansn i

step = 2; // Step size --> 1/speed

for anglel = 25:step:100, // Rotate loop
plot3d1(t,t,sin(t)*cos(t),anglel,45)
show_pixmap();

end

for angle2 = 45:step:80, // Tilt loop
plot3d1(t,t,sin(t)*cos(t),100,angle2)
show_pixmap();

end

f.pixmap="off";

Demo 3 (3/3): a 3D

object, plot
|

The surface has reached
its destination: rotated to
1009 (azimuth) and tilted
to 800 (elevation)

While testing various
parameters I saw this
message on the Console
(long list). It disappeared
when I re-run the script

\

Exception in thread "AWT-EventQueue-0" java.lang.NullPointerException

at javax.swing.plaf.basic.BasicTextUI$RootView.paint(Unknown Source)

PDr.EW I
Johnny Helkell

+

18. Miscellaneous

A hotchpotch of philosophy and
realism that hopefully is of use (@

Return to Contents

The problem-solving
process

The problem-solving process for a computational problem typically
goes through the following steps (not a textbook definition):

Define the problem (answer the question “"What's the problem?”)
Outline a way of solving the problem (block diagram, DFD, etc.)
Define equations and/or algorithms (solve the math problem)
Transform steps 2 & 3 to a software outline or architecture

Do the coding in steps and test each step before proceeding
Validate the solution (does it do what it should do, with all input
values (especially 0 & ©°), and nothing more than it should do?)

ou o brogn LY N

The boundaries between these steps can be blurred, iterations are
mostly needed, and one or two of the steps may be more important
than the others. Each step also requires a number of subtasks to be
performed. But in general it helps to have this approach in mind when
attacking a problem.

Good program structures

+

Keep in mind that a program is characterized by a) its structure and
b) by what it does

Give variables clear and meaningful names; use single letters only
for x, y and z axes, loop counters (j, k), and the like

Split the code into logical entities with the help of subroutines
Separate structural entities by empty rows and headline comments
Indent rows (loops, print commands, etc) for increased clarity

Be liberal with the use of comments, keep space between the
command and its row comment

Simple is beautiful; a good program is short and unambiguous

For a more thorough discussion, see textbooks on software
engineering

"Always program as if the person who will be mainitag your program is a violent
psychopath that knows where you live.”
Martin Golding

Programming pitfalls

1/4
+(/)

Computer programs cannot be tested to guarantee 100% reliability.
There is the danger of both hidden and—in retrospect—obvious
bugs.* Avoiding common programming pitfalls should be a
minimum goal and requires that we are familiar with them

Basic Scilab tutorials do not pay much attention to programming
pitfalls. “Eine Einfihrung in Scilab” by Bruno Pincon (original in
French, for me German is far easier) is an exception. Its last chapter
briefly discusses programming pitfalls. \Worth taking a look at

A search on the web for “Matlab pitfalls” provides some hints. There
is also a useful discussion in Chapter 9 of Hahn, Valentine: Essential
Matlab for Engineers and Scientists, 3rd ed., Butterworth-Heine-
mann, 2007

*) The term “bug,” according to anecdote, was coimetl947 when Grace
Hopper (“*Grandma Cobol”) of the US Navy identifladomputer problem
being caused by a moth in a relay (/tube/connettterstory varies). The
original “bug” was thus a hardware related problem kthal to the bug.

+

Programming pitfalls
(2/4): error types

Programming errors can broadly be grouped into the following types
— Logical errors, meaning errors in the algorithm used to solve a problem
— Syntax errors, meaning mistakes in the construction of Scilab statements
— Rounding errors, meaning errors due to limited computer accuracy

Logical errors are mostly the result of our limited understanding of
the problem at hand and/or our limited knowledge of algorithms in
general and Scilab in particular

Syntax errors are generally speaking due to human limitations:
oversight, carelessness, forgetfulness, and the like. Typical cases are
misspelling, mismatched quote marks, wrong type of arguments, etc.

Rounding errors arise from truncations due to hardware limitations,
digitization of mathematical functions, converting between decimal
and binary mathematics, etc.

There is also a fourth type, namely errors made by Scilab system
designers and programmers. They show up as bugs, performance
limitations, poor user interfaces, and the like

Programming pitfalls
(3/4): error messages

+

“Incompatible vector lengths” 123+ [43]

I--error 8

would be a better error message T -

This message is misleading if what you
o i intend is []" * [], but ok if you aim at
Inconsistent rr?Lrl'ggralication. -— elementwise multiplication [] = [] (bUt
“"Wrong multiplication” is better still)

~>[123]*[45 6]

-->sqrt = 572 + 3*17

Warning : redefining function: sqrt . Use funcprot(0) to avoid this message

Here you can see that the warning “redefining function”
does have a meaning. I have improperly used sqrt as a
variable name, but Scilab recognizes it is a built-in
function. The answer is correct, but one should rather
change the variable name. Check help name if you are
uncertain if an intended variable name is reserved

Programming pitfalls

+(4/ 4): the endless loop

I have several times mentioned
the risk of creating an endless

/I endless_loop.sce

loop, so let’s look at this little S // Demonstrates an endless loop. /
beast /I Execution ends only by crashing /
/l the program (click on the Close /

. /l button (X) on the Console /

When you execute the script you))

have to crash the program to stop n=.1; e

i i i dt = getdate();

it. The easiest way is to press the e TS)

Close button on the Console and while n ~=0.5;

then reload Scilab 3: rand(0,'normal’);
enda,

Why does the loop not end? disp(n)
Because we die from old age
before the variable n by chance

ets tly the value 0.5 Have you forgotten
IF By about seeding rand

functions? If so, go back
to Ex 1-3 (lotto draw)

Debugging (1/2)
+

m We are already familiar with Scilab’s rudimentary embedded
debugger that provides error messages on the Console (a separate
debugger window may come with Scilab 6.0)

s Another debugging tool is the pause, resume, abort set of
statements. Read section 6.7 in Introauction to Scilab by Michaél
Baudin for an explanation

m My suggestion for painless programming is stepwise development,
meaning to

— Develop the script inside out, starting with the central equation (or
similar “kernel™) and executing it using a simple plot or display command.
Correct the “kernel” until it works to satisfaction

— Extend the script stepwise by adding subroutines, loops, plot commands,
handle commands, etc. and test (execute) after each added step

— The advantage with stepwise development is that, first, bugs are isolated
to a specific part of the script and easy to identify and ,second, one gets
a feeling of satisfaction from each added bug-free step

Debugging (2/2):
validation

+

m Finally, even when a script seems to behave correctly we must
validate it. Don't judge a bird by the colors of his feathers

m To validate you can (among other things):

Take a critical look at the solution: is it logically sound, do you really
know what the program does—and what it does not do?

Check for and eliminate redundancies (I have found surprisingly many in
the textbook examples that I have borrowed)

Run it for some special cases for which you know the answer. If no
model cases are available, check at least that the answers it provides are
plausible and magnitudes are correct

Test for “unusual events” (e.g. where you could end up dividing by zero),
extreme values (e.g. infinite), conditions leading to loop lockup,
overlooked rounding errors, stack overruns, etc.

Work through the program by hand to see if you can spot where things
could start going wrong

Ask somebody cleverer than yourself for a second opinion

Speeding up Scilab (1/4):
introduction

+

m There are ways to speed up the execution of Scilab programs.
The three major rules are:

— Replace loops by vectorized operations.* Particularly with the for loop
one should aim at its vectorized alternative

— Use subroutines whenever possible
— Avoid time consuming algorithms like Runge-Kutta
m Speed-up—particularly if we move from loops to vectorized

functions—requires that we adopt new thinking. It's a new
learning effort. But vectors are, after all, what Scilab is all about!

m However, there is a problem with learning vectorized operations:
Textbooks tell us to use them but pay little attention to the
subject and their few examples are very basic

*) Scilab does not support Matlabvectorize() function.

Speeding up Scilab (2/4):
vector-based functions

+

m This case is adapted from

Baudin. The task is to compute
the sum of odd integers [1,99]

m In the first case we use a nested
while...if...end...end structure,
picking odd integers with the
modulo() function

m Below is the alternative
vectorized solution. Clean and
simple! Advantages:

— Higher level language, easier to
understand

— Executes faster with large
matrices

There was a bug in Scilab 5.3.1 and
it returned an “Invalid index” error
message for the latter script

// add_demol.sce

clc;
add = 0;
i=0;

while (i < 100)

i=i+1;

if (modulo(i,2)==0) then
continue;

end

add = add + i;

end
disp(add)

// add_demo2.sce

clc;
add = sum(1:2:100);
disp(add)

Speeding up Scilab (3/4):

T

Execution time can be
measured with the tic() and
toc() pair of functions

The top script computes ———»
values for sin(x) and orders the
result in a table with two
columns (shown to the far right
for only four points). The
execution time 17.389 s is for
the shown script, with Scilab
looping over 30,000 times

The lower (vectorized) script
performs the same task. The —»
execution time is 9 msec, about
2000 times faster than with the
for...end loop!

execution time tic()..toc()

// measure_timel.sce

0.
. 0.9092974
. -0.7568025
- 0.2794155

clear,clc;

x=[1; // Initate vector
y=[1; // Ditto
tic(); // Start stopwatch
for t=0:0.0002:2*%pi

x=[x; t];

y=[y; sin(t)];
end
time=toc(); // Stop watch

disp(time) // Display time

0.014

// measure_time2.sce

clear,clc;

tic();

t = (0:0.0002:2*%pi)";
[t,sin(t)]

disp(toc())

Speeding up Scilab (4/4):
two more ideas

‘ Replace loop by ones (): Replace nested loops with

length (find ()):
for i = 1:100000

x(i) = 1;
end

for i = 1:1000000

disp(toc()) tic(); Ik = 200660 ! x = rand(1,1);

X = ones(100000,1);

disp(toc())

if x < 0.2 then
ltime = 10.142 ! k=k+1;
end
end
disp(['k =" string(k)])
disp(['time =" string(toc())])

In this case the execution time is tic();

reduced by a factor of 34. Not k = Ie'ngtr?(fin_d(rand(1000000,1) < 0.2));
nearly as much as in the earlier e i L SN

cases, but still a significant - k= 199649 |

improvement (typical in practice) time = 0.298 |

Discrepancy In time
PEEHUGENENCH YY),

I wanted to check Scilab’s computation time for a cased given in a
textbook on Matlab by Hahn & Valentine. First I did it on the Console
and then on the Editor, but the results did not match:

The result is 97.531

seconds on the /7 scilab-matlab_loop.sce
>5=0; Console. Clearly not de:
true because the tic();

-->for n = 1:100000 s=0;
-->S=S+n; answer came up for n = 1:100000
_>end without delay 5=5+n;

end
—~>time = toc(); It is only 0.453 s time = toc();

- disp(time)

—->disp(time) when done on the

Editor. That’s more
q 97.531 like it

Let’s try with vectorized
functions (next slide)

Discrepancy in time
measurements (2/2)

And here is the same in vectorized form:

Now the Console tells
of a threefold

// scllab-matiab_vectorized.sce
-->tic();

improvement in clc;
-->n = 1:100000; tation ti tic();
computation time, Vi 50000:
> = sum(n) but still not true... 3= TR
| time = toc();
-->time = toc(); and the Editor disp(time)

e agrees about the
improvement, but /
{32994 the discrepancy

remains

Conclusion: There is a bug either in my approach or in Scilab; but
Scilab seems to execute faster than Matlab on the old Pentium II
processor that Hahn & Valentine used

ATOMS (1/6): installing
new toolboxes

‘ m Recall the problems with ATOMS that I mention in Chapter 1

m ATOMS (AutomaTic mOdule Management for Scilab) allows the user
to download and install external toolboxes (modules)

m There is reason to take a look at which modules might be of use,
since specialized tools can limit the time needed to solve a problem

m Start by hooking up the computer on the Internet and clicking on the
ATOMS icon on the Console. If you are unlucky you will see the
following message on the Console (I was unlucky and others have
been as well):

atomsDownload: The following file hasn't been downloaded:

- URL . 'http://atoms.scilab.org/5.3/TOOLBOXES/32/windows.gz'*
- Local location : 'C:\Users\Johnny\AppData\Loca\Temp\SCI_TMP_2772_\.atoms\1_TOOLBOXES.gz'

m The bug (Scilab bug #8942) remains unsolved and its true influence
is unknown to me. The Scilab team gives the unhelpful suggestion to
download the mentioned file

ATOMS (2/6): what's
\EEDE

+

This is the ATOMS
main window. Texts

Overlap a bit, but b ;_; - = List of installed modules
basically it is a list orm——

Of C O n t e n t S — mmt,',l-l te.dl lS.ciE-a b

Go ahead and try to
find something of
interest, even if
there isnt much for

u S e n g i n ee rS E_‘I E:TH e Processin

[E Linear algebra

Another problem is R -
that there is little B tumencatans
information about [—
what the modules
really can do for us

ATOMS (3/6): install

I decided to try S ——
S téphame F-'iea href="/categories/Graphics™>Graphics - ATOMS
Mottelett’s O
"Plotting library”
(this version —u |IEISEEE

gives problems Siihans MOTTELET
with a Vista PC!) Descripton

This library is supposed to help you to make plots as if you were using Matiab.
Click on Install

Plofting library

Version 0.42 includes new macros (image, imagesc).

By default all pictiib function names are defined with a leading underscore, for

An installation

message opens
at the bottom,
and after a goog
while Scilab tells
that the module
has been
installed

ATOMS (4/6): new Info

I also installed the GUI Builder
by TAN Chin Luh

When Scilab is restarted it
informs about the installed
toolboxes

Question: What is needed
make use of the installed
modules?

Check with the Help Browser
and yes, at the very end of the
list of contents are new
additions: “Matlab-like plotting
library” and “A Graphic User
Interface Builder”

ATOMS (5/6): Check with
+Matlab’s quiver3()

// matlab_quiver3.sce

/7 Test Matlab’s quiver3() function /

clear,clc,clf;

[X,Y]=meshgrid(-2:0.2:2,-1:0.2:1);
Z=cos(X.*Y);
surf(X,Y,2);
hold on
[U,V,W] = surfhorm(X,Y,2);
quiver3(X,Y,Z,U,V,W,'r");
Legend 'Surface normals'
colormap gray
hold off

I tested Matlab’s quiver3() function
with the script in Help, but e ol
something is wrong. The plot is |

wrong and Scilab yells about hold atline 10 of exec file called by :
on, which it should know by now es\matiab_gulver3.sce’, -1

ATOMS (6/6): discussion
of problems

+

My troubles began in earnest with the execution of Matlab’s
quiver3() function. No matter what I did, all Scilab scripts turned out
garbage plots

The situation was confused by simultaneous events: Apart from
toolboxes I had also installed Scilab 5.3.2, had some Windows
updates arriving, and saw hiccups with both MS Word and Windows.
There was no problem with Scilab 5.1.1

Windows had been running for three years so I decided to reinstall
it. Only after this process I suspected ATOMS

To cut the story short, the problems were due to the Plotlib toolbox.
I uninstalled it and Scilab 5.3.2 worked normally again

Lessons learned: Install only one toolbox at a time and test it and
Scilab immediately. Uninstall the toolbox in case problems emerge

®

+

Building a script library

Over time we accumulate a huge number of programs. How should
we administer them, how can we later find what we need?

This presentation demonstrates alternative ways of commenting
scripts—a most important subject when a program has to be
modified in the future

Pay attention to program names. Descriptive names help to identify
individual programs among other programs in a large file

Build your library of Scilab scripts in a logical manner. In this work I
have partly saved scripts on a thumb stick drive, in the file
H:\Dr.EW\Writings\Scilab examples\, under the assumption that this
presentation points to where to find a particular script. This is not a
the way to do it continuously, so give your own documentation
system a thought—including the backup solution!

One option is to maintain a spreadsheet catalogue of programs with
information on what a specific script does, where it is located, which
functions it contains, etc. An advanced solution is documentation
software of the type used in requirements management

PDr.EW l
Johnny Helkell

+
19. Examples, Set 6

Additional examples, mostly
related to Chapters 15-19

Return to Contents

Example 6-1: user

d

+

m This example is a modification of

the similar in Antonelli, Chiaverini:
Introduzione a Scilab 5.3, pp. 74-
80

The task is to create a GUI in the
Graphics Window (GW). The GUI
consists of
— A sine plot
— A slider for changing the angular
frequency of the plot

— Two “radiobuttons” by which the
properties of the plotted graph can
be changed

— An exit button that closes the GUI

The process is shown as a flow
diagram to the right

efined GUI, introduction

l Yes

Implement
changes

Close GUI

!

Ex 6-1: user defined GUI,
script (1/p)=

// Generates on the Graphics Window (GW) a GUI that contains a /

/7 sine plot (plot2d), a slider by which to adjust the angular /
Go to the MAIN // frequency of the sine function, two radiobuttons that change /
pr 0 g ram b el oW if_ y ou ;; 2//7:5;2/1{2 :/éal;’fo/or of the sine graph, and a pushbutton that é
want to proceed in a
logical order clear,clc;
The first b . // ¥*¥** SUBROUTINES **** //

€ 1Irst subroutine,
LTIV (WL IS // cclaration of inital plot in GUL:
the initial sine plot ——» EEENEEREN1)
within the Graphics t = linspace(0,7,200); p o
: . i ; w =5; Initial angular frequency
WlndOW, InCIUdmg plot2d(t,sin(w.*t),.. // Initial plot w=5 rad/s
title and axes labels rect = [0,-1.1,7,1.1]);
a = gca();
The initial angular a.axes_bounds = [0.2,0,.8,11; // Frame dimensions & location
frequency w is defined xtitle("GUI DEMO WITH sin (wt)",...
"Time [s]","Amplitude");
as 5 Hz a.font_size = 3; // Axes mark size
_] a.X_label.font_size = 3; // x_label size

There is really nothing a.y_label.font_size = 3; // v_label size
Special here at|t|ef0nt_5|ze = 3, // Title size

endfunction

Ex 6-1:

+script/ .

The next two /
subroutines respond to
user commands (slider
and radiobuttons
respectively), and point
to the fourt subroutine,
new_GUI_data()

An existing plot is
erased

The slider goes from
end to end in 10 steps

The if-then-else—-end
constructs register the
status of whichever
radiobutton has been
clicked

// Functions for changes wrt user actions:

/

function update slider()
new_GUI_data();
endfunction

// IF slider movement
// GOTO new_GUI_data()

function update radio()
new_GUI_data();
endfunction

// IF radiobutton click
// GOTO new_GUI _data()

// Redefine plot in GUI:
/"
function new GUI data()
t = linspace(0,7,200)
drawlater();
a = gea();
if (a.children~=[]) then
delete(a.children);
end
w = h_slider.value/10;
plot2d(t,sin(w.*t));
if (h_radiol.value == 0) then // Check status of style button
a.children.children.polyline_style=1; // Basic style: line
else
a.children.children.polyline_style=3;
end
if h_radio2.value==0 then
a.children.children.foreground=1;
else
a.children.children.foreground=2;
end
drawnow();
endfunction

// Delay changes

// IF frame contains grapah...
// then delete graph

// Slider range: 10 steps

// IF clicked: bars

// Check status of color button
// Basic color: black

// IF clicked: blue

+

Ex 6-1: user defined GUI

Scri pt/ | |z

xdel();
funcprot(0);
;'!;Iljset I(\:|/Iea| Qtepsr%?wra m // Define window size & position:
manesnazzanazsnnazanin s s s
existing GW 7 s_creen_siz7e*= get(o,"_scr(e::),e):nsize_px/"}; 7/{ Find ca_mpute; s;relen siz:.:
size_x = .7*screen_size(3); .7*screensize_px 3rd elemen
i : size_y = .7*screen_size(4); // 7*screensize_px 4th element
The size and Ioc_at|on *Q h_graph = scf(0); // Open Graphics Window
of the new GW is h_graph.figure_size = [size_x size_y]; // Define GW size
defined as a function h_graph.figure_position =... // Position GW in the...
Of th e total screen \ [size_x/5 size_y/6]; // middle of the screen

Size // Open GUI with inital plot:
e
Here we pick up the — QiliEReteF

initial plot that comes

) // Add EXIT button:
in the GW (GUI) A
@ h_stop = uicontrol (h_graph,...

The next thing that "style","ptEJ)S(I;$utton",--- Z gec;f;epusl;bgtfon

: "string"," e ushbutton labe
we add to the GUI is Pl onsce 4,
the EXIT button. Note "backgroundColor",[1 0 0],... // Red button RGB
how many arguments "“foregroundColor",[1 1 1],... // White label RGB

. "position",[85 size_y-210 50 50],...

the uicontrol() ¥ callback”,"xdel(0)"); // CLOSE GW if button pushed

function has

Ex 6-1: user defined GUI,

Jrscript (4/6)

Here is the uicontrol()
command that controls

th e S” C| er \ // Add slider & label:
) i h_slider= uicontrol(h_graph,...
strcat() is a function "style","slider", ... // Declare slider
that we have not met jjmin"',olf(-)-(-) Z Zi_zersta;t Vc;/ue
ax",100,... ider end value
before. Note that W and "value",50,... // Initial slider value
rad/ S are surrounded by "position",[10 size_y-270 180 20],... // Slider size & location
double asterisks (' 'w' ;ggllbasctk'(':;'tu([ft‘j?te_sli‘dlesrt()_;n.él.(h/élgeOTzlt:/tllg)date_slider()
1 11 11 = Str W = rl _sliaer.vaiu
and rad/ S)/ not “'rad/s ‘ ']);h_text_slider.string = foo");
by quotatlon NEILS slidelbl = strcat(["w = 5 rad/s"]); // Define initial label
i Tdal I h_text_slider = uicontrol(h_graph,...
(strlngs Wlthm e Strmg) "style","text",... // Declare text
. - T "horizontalalignment”,"center", ... // Position in reserved field
This is the initial label "string" slidelbl, ... // Add slider label
below the slider "fontsize",14,...
"backgroundColor",[1 1 1],... // White background
And the uicontrol() that "position”,[10 size_y-310 180 20]); // Field size & location

takes care of label
changes

Ex 6-1: user defined GUI,

Jrscript (5/6)

Th et fi I’ISt tli‘]a d iOtl;J/:J ttOP // Add radiobutton for graph style:
controls the styie o /=== m = e e e e e e e
I h_radiol = uicontrol(h_graph,...
l(:ra]eSOplllc()Iltliler(\jeSIISnsh(éu i "style","radiobutton", ... // Declare radiobutton
"Min",0,...
default, turns to a bar "Max",1,...
"value",0,... // Initial button value
grgphbwhen .thel. ked "backgroundColor",[1 1 1],...
radiobutton is clicked) "osition",[10 size_y-350 20 20],...
"callback”,"update_radio()"); // GOTO to update_radio()
The commands are h_text_radiol = uicontrol(h_graph,...
quite similar to the ::styl.e","text".,... o // Declare button text
. horizontalalignment","left",...
ones of the Sllderl "string","-Change graph style",...
except that the foo "backgroundColor”,[.8 .8 .8],... // Gray background
command is missing e

"position",[40 size_y-350 140 25]); // Field size & location

Notice the “callback” statements. They are the beasts that make us jump
up to (GOTO) the subroutine in case (here to update_radio())

Ex 6-1: user defined GUI,

Jrscript (6/6)

// Add radiobutton for graph color:
femmmmanssinanssinn s s

The second

radiobutton controls
the color of the
plotted sine curve
(black is the default,
turns to blue when
radiobutton is clicked)

This is mostly a
repetition of the
commands for the
first radiobutton, but
the position in the GW
is different

h_radio2 = uicontrol(h_graph,...
"style","radiobutton",...
"Min",0,...
"Max",1,...
"value",0,...
"backgroundColor",[1 1 1],...
"position",[10 size_y-380 20 20],...
"callback","update_radio()");
h_radio2_txt = uicontrol(h_graph,...
"style","text",...
"horizontalalignment”,"left", ...
"string","-Change graph color",...
"backgroundColor",[.8 .8 .8],...
"fontsize",14,...
"position",[40 size_y-380 140 25]);

// Declare radiobutton

// Initial button value

// GOTO to update_radio()

// Declare button text

// Gray background

// Field size & location

Ex 6-1: user defined GUI,
and here itis

‘ | # Graphic window number 0 i | (5] [l
Click on %80 |0
EXIT and o

sin

F

= v

Ex 6-1: discussion

m [copy-pasted the script from Antonelli & Chiaverini into Scilab’s
Editor

m The script had to be cleaned up and some redundancies could be
removed

m [added the second radiobutton and organized the script in what I
thought was a more logical fashion

m When I executed the script it opened up as expected, but the slider
was missing

m After a frustrating weekend I did the whole thing from the beginning,
but now in steps. The error was that I had moved the if-then—end
construct in function new_GUI_data() after the plot2d() command

m Lessons learned: Do the job stepwise and test as you progress

m As for the lockup, my guess is that Scilab runs into a conflict
situation when it should update the handle and the previous update
still is in progress

Example 6-2: animation of a
waltzing polygon (1/4)

m This demo is based on
Pingon’s “Eine
Einflihrung in Scilab”

m The original contained
errors, obsolete
functions, and redundant
commands. For instance,
I transformed xset()
functions to handle
graphics commands (as
explained in Chapter 7)

// animation_pincon_mz2.sce

// The script plots the track of a blue polygon (rectangle)

// with red border, as it turns around its axis while racing

// counterclockwise in a circular loop on a black background.
// The rectangle can be chaged to a trapetzoid or other shape
// by changing element values in the matrix polygon. Changing
// theta arguments in the matrix align gives different effects

clear,clc,clf;
// Basic parameters:

steps = 100; /| Steps per circular loop
blength = 0.6; // Basic length of polygon
width = 0.3; // Basic width of polygon
radius = 0.6; // Radius of circular loop

revolutions = 1; // Number of loops to run

Ex 6-2: animation of a
waltzing polygon (2/4)

m The matrix polygon
defines length & width
of edges. Change them
to different values and

the r_e_ctangle iS_ t = linspace(0,revolutions*2*%pi,steps)’;
modified to a different X_axis = radius*cos(t); // x-axis of circular loop

// Basic equations & definitions:

polygon y_axis = radius*sin(t); // y-axis of circular loop
polygon = [-blength/2 blength/2 blength/2 -blength/2;...
m Note the use of the “width/2 -width/2 width/2 width/2];

%inf constant to fill /| Defines corners of polygon
missing arguments in
plot2d()

/] Set scale for isometric plot:

lot2d(%inf, %inf,frameflag=3, rect=[-1,-1,1,1], axesflag=0
» h=gca() declares h as _, [Eawensesi g [], axesflag=0)

a handle xtitle('Waltzing polygon')
h.background = 1; // Set background to black

m The handle is first used
to set the background
color

Ex 6-2: animation of a

Jrwaltzing polygon (3/4)

m The matrix align turns
the polygon into a new

angle. Change theta /| Plot rectangle as it waltzes its loop:
values to see some
. . . // Number of turns per loop
interesting effects o = e
theta = turns*t(i); // Angle of polygon alignment
m Here the handle is used Alen = [Eeese) St
. in(thet thet ;
to set the fill color of . 7'? (Reea?i)glf: S.’:(olsgagi P
the polygon; the h.foreground = 2; /| Set fill color to red
i xfpoly(align(1,:)+x_axis(i), align(2,:)+y_axis(i))
AINgesss 15 executed by // Fills polygon with defined color
xfpoly() h.foreground = 5; // Change to blue for border
_ h.thickness = 3; // Set border thickness to 3
m Next the handle defines xpoly(align(1,:)+x_axis(i), align(2,:)+y_axis(i), lines',1)
the border color: in this // Draws polygon border in defined color
/ end

case the executing
function is xpoly()

Ex 6-2: animation of a

Jrwaltzing polygon (4/4)

In this screenshot the
polygon (rectangle) has made
just over three quarters of its
counterclockwise loop. At the
same time it has spun 24
times around its axis, and has
begun the last 34 turn. There
are 100 position samples on a
full loop (steps = 100;) and
it completes in a few seconds

Example 6-3 (1/2):

+

m This example shows how a gray

color scale and contour lines can
be c_omblned to create the
illusion of a 3D space

linspace() is multiplied by a 1x3
vector since the color map (the
“third dimension”) must be a
mx3 matrix. The color map can
be inverted with (1-linspace())
and a nonlinear amplitude
function can be added to stress
the effects

The Sgrayplot() function
smoothes the plot color
compared with the basic
grayplot() function

/

Contour lines are added —

grayplot() & contour2d

// grayplot_demo.sce /

// Gray area map with level curves using /

// grayplot()/Sgrayplot() & contour2d() to /
// create illusion of a 3D space /

clear,clc,clf();

// Color map definitions & initial declarations:
e
f = gcf();

f.color_map = linspace(0,1,64)*ones(1,3);

n = 20; // Plot resolution

x = linspace(-3,3,n); // 3D plot limits
Y=X

// Plot function:
fmsmnanazznannazes
Z = sin(x)"*cos(y);
Sgrayplot(x,y,Z)

// Function to plot
// Smoothed grayplot

// Define and add level curves:

femmmsansanssannn i s
level = [-.8 -.6 -.4-.2-.03 .03 .2 .4 .6 .8];
contour2d(x,y,Z,level);

contour2d()

+

Ex 6-3 (2/2): grayplot() &

sin(x)

cos(y)

The influence of the sine and
cosine functions are easy to see
(note that the origin is in the
center of the graph)

The contour lines become white
if the color map is inversed

Steps begin to show in the gray
scale if the color map definition
is changed to linspace(0,1,32),
where the argument 32 stands

for halved color resolution

Change the plot function from
Sgrayplot() to grayplot(), and
you'll see the meaning of the
variable n=20

Example 6-4:

C

+

hart, script

This script is based on a solution
by Pierre Lando and shows a
method for creating a sector
chart, with each sector having
defined length (radius), direction,
width, and color

The solution can be seen as a
more general case of Scilab’s
pie() function that we met in
Chapter 9

The most important function in
this case is xfarcs(), which we
already met in the first animation
demo (the arcs vector is of
course also important since it
governs the whole plot)

SiSetn)

// Plots four colored sectors in predifined /
// directions and with predifined widths /

clear,clc,clf;
V/4 ---- SUBROUTINE ---- /

// The plot2d() function defines the figure, /
// Xfarcs() adds colored sectors to the plot /

function create sectors(r, angle, width, col)
plot2d(%nan,%nan,-1,"031"," ",[-1,-1,1,1])
arcs=[-r;r;2*r;2*r;(angle-width/2)*64;width*64];
xfarcs(arcs,col)

// Add sectors
xtitle("COLORED SECTORS')
endfunction

/=== MAIN ---- /

// Define sectors:

emsnzazznannizannazes

rad =[.9,.6,1,.5] // Sector radii
angle = [0,135,225,270] // Sector midpoints
width = [45,75,60,80] // Sector widths
colors = [2,3,5,7] // Color definitions

// Call subroutine:
Jfmensanznannazannazeas

create sectors(rad,angle,width,colors)

// ===- END MAIN ---- /

Ex 6-4: sector chart, plot

+

m Here is the plot, nice and
beautiful. We can
suppress the axes by
changing the plot2d()
argument ‘031’ to ‘030’

COLORED SECTORS

m The overlapping yellow
sector just happens to be
on top (last element in the
vector list). In practical
applications, when doing
automatic plotting of
some process, we would .
have to put more effort o
into gettmg the plOt the 10 -0f €8 04 02 00 02 04 08 08 10
way we want

Example 6-5: Robot arm
(1/6), introduction

+

Recent web discussions on the

relative virtues of Scilab, Matlab, and

Octave made me take a new look at
manual conversion of Matlab scripts

This case with a two-dimensional
moving robot arm is from Chapman,
S.].: Matlab Programming for
Engineers, 2nd ed., (publisher &
year unknown), pp. 202-206

The case demonstrates practical
application of matrices. See
Chapman for a full discussion

The original script can be found on
the next slides; the converted script
with added comments are on the
following two slides

Base motor

Elbow motor

Hand

Ex 6-5: Robot arm (2/6),
Matlab script

% Robot arm motion script b= T\d

% %

% Initial values, angles in degrees % Equations of motion

tf = 2; L1 =4;

thetal0 = -19*pi/180; L2 =3;

thetaltf = 43*pi/180; t = linspace(0,2,401);

theta20 = 44*pi/180; tg = [t.A5; .24, t A3]

theta2tf = 151*pi/180; thetal = thetal0 + a™*tq;

% theta2 = theta20 + b™*tq;

% Equations for a coefficients x1 = L1*cos(thetal) + L2*cos(thetal + theta2);

T=[tfA5 tf™N4 tfA3 x2 = L1*sin(thetal) + L2*sin(thetal + theta2);
S5*tfAg4 4*tfA3 3*fA2 %
20%tfA3 12*%tfA2 6*tf]; % Plot path of hand

c = [thetaltf-thetal0; 0; 0]; plot(x1,x2),...

disp("Coefficients for thetal motion:’) xlabel("x_1"),...

a=T\c ylabel("x_2"),...

% title("Path of robot hand’),...

% Equations for b coefficients text(4.3,0,'t=0s: (x_1,x_2) = (6.5,0)),...

d = [theta2tf-theta20; 0; 0]; text(0.2,2,t=2s: (x_1,x_2) = (0,2)")

disp("Coefficients for theta2 motion:’)

Scilab conve

+

Ex 6-5: Robot arm (3/6),

The joint motors are
controlled by the following
polynomial expressions:

O,(t) = 0,(0)+a t+ati+at3+
+a,t+act
O,(t) = ©,(0)+b,t>+b,t*+b,t3+
+h,t2+bct

Matrix equations are set up
and solved for coefficient
vectors (a, b), using given
initial values ©(0) and final
values O(t), and the results
are used to plot the path of
the robot hand

// robot_motion.sce

// Robot arm motion in two dimensions using a fifth-degree /
// polynomial to control the motion. See Chapman, S.J.. /

// "Matlab programming for Engineers,” 2nd ed., for a /

// detailed discussion. /

clear;clc,clf;

// Initial values, angles in degrees:
e

tf = 2; // Finish time

thetal0 = -19*%%pi/180; // Theta 1 start position
thetaltf = 43*%pi/180; // Theta 1 final position
theta20 = 44*%pi/180; // Theta 2 start position
theta2tf = 151*%ypi/180; // Theta 2 final position

// Equations for a coefficients (velocity
// constraints have been taken into account):
maesnazsanansnninanin s s
T=[tA5 t"4 tf"3
5*tfA4 4*EfA3 3*tfA2 // Angular velocity

20%tfA3 12*tf~2 6*tf |; // Angular acceleration
c = [thetaltf - thetal0; 0; 0], // Theta 1 movement
a=T\c // Coefficient vector a
disp(['Coefficients for thetal motion:'])

disp([string(a')])

+

Ex 6-5: Robot arm (4/6),
Scilab conversion (2/2

By requiring that velocity
and acceleration at t=0 be
zero, the polynomial
coefficients a: and a,
become zero. This limits the
size of the T matrix
(previous slide) to 3x3

The computed coefficient
vectors a and b are used
to define angular
speeds, based upon
which the hand position
is defined in x1 and x2
coordinates

// Equations for b coefficients:
e

d = [theta2tf - theta20; 0; 0]; // Theta 2 movement
b= T\d // Coefficient vector b
disp(['Coefficients for theta2 motion:'])

disp([string(b")])

// Equations of motion:

fmessazmnsnnzsnansn e

L1 = 4; // Length of upper arm [feet]

L2 =3; // Length of lower arm [feet]

t = linspace(0, 2, 401); // Computation steps

tg = [t.A5; .24, t.A3]

thetal = thetalO + a'*tq; // Base motor angular speed
theta2 = theta20 + b'*tq; // E/bow motor angular speed
x1 = L1*cos(thetal) + L2*cos(thetal + theta2); // x1 position
x2 = L1*sin(thetal) + L2*sin(thetal + theta2); // x2 position

// Plot path of hand, add labels & legend:
fmassanazmnansn s s
plot(x1,x2),..

xlabel('x_1"),..

ylabel('x_2"),..

title('PATH OF A ROBOT HAND"),..

hl = legend(['START: t=0s, (x_1,x_2) = (6.5,0); ..

STOP: t=2s, (x_1,x_2) =(0,2)'], 3)

Ex 6-5: Robot arm (5/6),

plot & display
+

FATH OF A ROBOT HAND

Coefficients for thetal motion:

10.2028945 -1.0144726 1.3526302 '!

Coefficients for theta2 motion:

10.3501567 -1.7507834 2.3343779 !

Ex 6-5: Robot arm (6/6),
discussion

The manual conversion from Matlab scripts to Scilab was simple
enough. Only the following came up:

m Matlab’s % comment marks had to be changed to //
s Matlab’s built-in pi function had to be changed to %pi

m Apostrophes (quotation marks) had to be rewritten, but only
because copy-pasting gives the wrong type (" instead of)

m The disp() command had to be changed because Scilab does not
output the a and b coefficients even if respective lines (a=T\d and
b=T\d) end without a semicolon (a bug?)

m Matlab’s text() command is not recognized by Scilab (cf. Chapter
9). It allows legend beginnings to be located at precise points
— The Help Browser does not give an answer on what to do

— The Scilab-for-Matlab-users compendium by Beil & Grimm-Strele
mentions this particular case but does not offer a solution

— Conclusion: We have to stick to Scilab’s ordinary legend commands

Example 6-6: animation
with planet & moon, intro

+

m The task is to animate a planet with a moon rotating around it. If
possible, the bodies should have different colors

m The task has its first difficulty in finding a way to keep the planet
static while the moon rotates. My solution is to redraw both bodies
for each step that the moon moves. Slow, but it works

m The second difficulty is to give the bodies different colors. The
handle command color_map is nice, but it operates on the Figure
level and only one color is possible for graphs on the Axes level.
The presented solution is not perfect, since only the edges of the
facets that form the spheres have different colors (this can be
done on the Entity level)

m The third problem is with box alignment. It will be discussed on the
plot slide

Ex 6-6: planet & moon,

+

script (1/3)

m The spheres (planet,
moon) are built from

rectangular facets.

The

values of the facets are

computed here, in
subroutine facet()

m Basic variables for the

planet

~

// planet_moonl.sce

// Animation with a moon rotating around a planet. /
// The spheres are ccomposed of 3D X, Y, and Z /
/7 facets using the surf() function to plot. /

/ clear,clc,clf;

)/ ¥¥5* SUBOUTINE **** //

// Attach defined points to the spheres:

function [x, y, z] = facet(v, h)
X = cos(v)*cos(h); // Facet x-matrix
y = cos(Vv)"*sin(h); // Facet y-matrix
z = sin(v)"*ones(h); // Facet z-matrix

endfunction

) KXKK MATIN **%% //

// Define planet & moon variables:

[fmsmnamnnannsnans s s

// Planet (p), 10x10 degree grid:

vp = linspace(-%pi/2,%pi/2,18); // 18 steps vertically
hp = linspace(0,2*%pi,36); // 36 steps horizontally
p=2; // Planet radius

Ex 6-6: planet & moon,

Jrscript (2/3)

// Moon (m), 20x20 degree grid & offset from origin:
vm = linspace(-%pi/2,%pi/2,9); // 9 steps vertically
hm = linspace(0,2*%pi,18); // 18 steps horizontally

m Basic variables for the m - 02-31; Zﬂaan rj;.liu:
m=2.1; oon offse
moon, both for the e - 0; // Moon start point
moon itself and its n=1; // # of moon revolutions
location in space step = 100 // # of steps/revolution
. // Define facets for spheres using subroutine facet():
m GO TO subroutine e —
facet() to compute ——— JUCALFAIRSECEITY // Planet

facet matrices [Xm,Ym,Zm] = facet(vm,hm); // Moon

// Plot commands (box, planet, moon):

m Basic plot definitions /e e
\ // Define 3D box, put double buffer on, define surface:
a = gaa();

a.data_bounds = [-5,-5,-3; 5,5,3]; // 3D box size

f = acf();
f.pixmap = "on"; // Double buffer

f.color_map = hotcolormap(32); // Surface color

Ex 6-6: planet & moon,
script (3/3

‘ // Plot planet & rotating moon:
for Az = 0 : 2*%pi/step : n*2*%pi
m Loop for rotation // Delete previous entities (planet & moon):
begin S if (a.children~=[]) then // IF frame contains graph...

delete(a.children); // then delete graph
end

m Delete old graphs

// Plot planet & define facet edges:

a.background = color('grey'); // Box wall color

m Put color on the box SUrf(T*Xp, rp*Yp, *Zp); 7/ Plot planet
el = gce();
m Push p|anet data to el.foreground = color('red"); // Facet edge color
first buffer // Plot moon & define facet edges:
x_loc = Rm*sin(Az); // Location on x axis
m Recalculate moon o BRAEERCE AR // Location on y axis
- C = Rm*[x_loc, -y_loc, 0] // Moon center
Iocathn & pUSh data surf(C(1)+rm*Xm, C(2)+rm*Ym, C(3)+rm*Zm); // Plot moon
to first buffer &2 = gce();
e2.foreground = color('blue'); // Facet edge color
m show_pixmap() = enfjhOW—P'Xmap();
push plot to screen f.pixmap = "off":

+

Ex 6-6: animation with
planet & moon, plot

And here the beauty is. The
moon rotates
counterclockwise and is
shown in its start position

As said above, this task was
not without problems. One
thing that I failed to do was
to tilt the box somewhat
differently. The handle
command a = gca();
a.rotation_angles =
[alpha,theta] just refused to
cooperate and the angles
stayed at 51° and -125°
respectively (a final bug?)

Measured with tick(); ... tock(),
each moon step takes about 150
milliseconds to perform

PDr.EW I
Johnny Helkell

+
20. Adieu

Final words to accompany you in
your struggle for survival of the (g
fittest -

N\

Return to Contents

That's it, Folks!
+

m We have reached the end of our journey. The road was longer and
bumpier than I anticipated

m There is much more to Scilab but we are on our way if we master
even this material (think of an office software package and how
little of its potential you really know even if you use it daily)

m The most important next step is to do Scilab simulations on our own,
to solve problems in our particular sphere of interest

Learning = hard brainwork + a tough rear end

s And for everybody’s sake, keep reminding the Scilab team about the
need for a comprehensive, up-to-date tutorial. To repeat an old
engineering adage: The job isn’t done until the paperwork is done!

m All the best and take care
JH

“When | think over what | have said, | envy dumiople.”
Seneca (4 B.C.—A.D. 65).

