
Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

Scilab for Real Dummies,Scilab for Real Dummies,
Introducing an OpenIntroducing an Open--Source Source

Alternative to Alternative to MatlabMatlab

Johnny HeikellJohnny Heikell

v1.0 / Scilab 5.3.2 (5.3.3)

"It is a mistake often made in this country to measure things by the amount of money
they cost." Albert Einstein

About this presentationAbout this presentation

I compiled this presentation while familiarizing myself with Scilab for
basic engineering applications. The exercise taught that a reason to the
limited spread of Scilab is lack of good tutorials in English, which makes
learning Scilab a frustrating experience for programming newbies. It’s a
pity because Scilab deserves better recognition. Hopefully this
presentation can be of use to at least some Scilab aspirants.

The text no doubt has shortcomings and errors. I hope to come up with
an improved version in a not too distant future (with Scilab 6). Please
post comments & suggestions at:

Espoo in August 2011

Johnny HeikellJohnny HeikellJohnny HeikellJohnny Heikell
www.heikell.fi
LinkedIn

Copyleft: This material is released under the only
condition that you do not put restrictions or a price
tag on your redistributions—modified or not—and

add this requirement to child copies.
Otherwise © J. Heikell 2011

Tribute to old godsTribute to old gods

The best Scilab tutorials are non-English. The following are the ones
that I have consulted most for this work:

• Timo Mäkelä’s Scilab/Xcos tutorials (3 parts) in Finnish <http://sites.
google.com/site/tjmakela/home>. Heavy on mathematical formalism,
standard dull LaTeX typesetting, but the best one I know

• Jean-Marie Zogg’s Arbeiten mit Scilab und Scicos in German
<http://www.fh-htwchur.ch/uploads/media/Arbeiten_mit_Scilab_und_
Scicos_v1_01.pdf>. It’s good and informal, and contains details that
Mäkelä has omitted. Needs updating

• Wolfgang Kubitzki’s mixed tutorials in German that can be found at
<http://www.mst.fh-kl.de/~kubitzki/>. Quite good, a lot of details, few
practical examples (scripts in separate .zip files)

I am indebt to their work.

☺

“To copy from one is plagiarism, to copy from many is research.” Unknown

Why I did it Why I did it

the way I did itthe way I did it

As a grad student at KU in 1990-91, I needed to quickly learn MathCAD
or Matlab. A fellow student showed me MathCAD basics in 15 minutes
with the use of a sine function. The lecture went something like this:

• “First you declare the variables that you need”
• “Then you define the function that you want to plot”
• “After that you write the plot commands”

With that teaching I got started and was able to use MathCAD for my
MS thesis.

Lessons learned: Show examples and skip the academic trivia.

I am deeply grateful to Jim for his lesson. We’ll repeat it as soon as
Scilab is installed and opened.

☺

Why PowerPoint?Why PowerPoint?

1.1. These were originally personal notes, I recognized only later thThese were originally personal notes, I recognized only later that at
they may be of use to othersthey may be of use to others

2.2. It is easy to edit PPT material slide by slideIt is easy to edit PPT material slide by slide
3.3. You get a quick overview of the discussion at hand by shifting You get a quick overview of the discussion at hand by shifting

between between PPTPPT’’ss Normal and Slide Sorter viewsNormal and Slide Sorter views
4.4. PPT has an advantage over PDF in allowing the reader to modify PPT has an advantage over PDF in allowing the reader to modify

the work the way (the work the way (s)hes)he likeslikes
5.5. You can copyYou can copy--paste the provided scripts into Scilabpaste the provided scripts into Scilab’’s Editor s Editor

without having to rewrite them, only minor editing is neededwithout having to rewrite them, only minor editing is needed
6.6. And finally, I have seen And finally, I have seen too many depressing LaTeX documentstoo many depressing LaTeX documents

Why do I release this tutorial as a PowerPoint* presentation when there
is enough material for a 400-page book? There are several reasons:

☺

*) .ppt documents do not require MS software. LibreOffice works as well (at
least up to PPT 2003) but some editing may be needed. Oracle threw in the
towel on OpenOffice in April 2011, but it lives on in the Apache Incubator.

Why simulate?Why simulate?

�� British physicist and engineer Lord Kelvin British physicist and engineer Lord Kelvin
(William Thomson) is known to have said:(William Thomson) is known to have said:

““When you can measure what you
are speaking about and express it in
numbers, you know something about
it.””

�� His words can be paraphrased in computerHis words can be paraphrased in computer--
age terms:age terms:

““When you can simulate what you are
speaking about and present it visually,
you know something about it.””

Lord Kelvin 1827-1904

ContentsContents

1.1. IntroductionIntroduction
2.2. A first peek at ScilabA first peek at Scilab
3.3. The Console & EditorThe Console & Editor
4.4. Examples, Set 1 Examples, Set 1
5.5. Matrices, functions & Matrices, functions &

operatorsoperators
6.6. Examples, Set 2 Examples, Set 2
7.7. Graphics & plottingGraphics & plotting
8.8. Examples, Set 3Examples, Set 3
9.9. Converting Converting MatlabMatlab filesfiles
10.10. SubroutinesSubroutines

11.11. Flow controlFlow control
12.12. Examples, Set 4Examples, Set 4
13.13. Doing math on ScilabDoing math on Scilab
14.14. Examples, Set 5Examples, Set 5
15.15. Working with GUIsWorking with GUIs
16.16. File handlingFile handling
17.17. AnimationAnimation
18.18. MiscellaneousMiscellaneous
19.19. Examples, Set 6Examples, Set 6
20.20. AdieuAdieu

HOW TO HYPERLINK IN POWERPOINT: 1) Slide Show mode: By
clicking on the underlined text. 2) Norman View mode: Put cursor on the
underlined text � right-click � Click: Open Hyperlink. (There is a bugin
PowerPoint, hyperlinking to certain slides is impossible, e.g. to Chapter 19.)

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

1. Introduction1. Introduction

What is and why use Scilab?What is and why use Scilab?

Return to Contents

What Scilab is (1/2)What Scilab is (1/2)

�� A software package for scientific and engineering computing, A software package for scientific and engineering computing,
quite similar to quite similar to MatlabMatlab

�� Scilab is a tool for Scilab is a tool for numeric computingnumeric computing, as are Excel, GNU , as are Excel, GNU
Octave, Octave, MatlabMatlab, etc. The alternative is , etc. The alternative is symbolic computingsymbolic computing, to , to
which belong Maple, which belong Maple, MathCadMathCad, , MathematicaMathematica, and others, and others

�� Developed by Consortium Scilab (DIGITEO), behind which are Developed by Consortium Scilab (DIGITEO), behind which are
a number of French institutions and companiesa number of French institutions and companies

�� Included in the Scilab package is Included in the Scilab package is XcosXcos, a graphic modeling , a graphic modeling
and simulation tool. However, it is not compatible with and simulation tool. However, it is not compatible with
SimulinkSimulink. . XcosXcos 1.0 came with Scilab 5.2, before there was 1.0 came with Scilab 5.2, before there was
ScicosScicos. The . The confusionconfusion is complete with a rival called is complete with a rival called ScicoslabScicoslab

�� Scilab is free and can be downloaded at Scilab is free and can be downloaded at www.scilab.orgwww.scilab.org

What Scilab is (2/2)What Scilab is (2/2)

�� Scilab is matrixScilab is matrix--oriented, just like oriented, just like MatlabMatlab
�� It allows It allows matrix manipulations, 2D/3D plotting, animation, etc.
� It is an open programming environment that allows users to

create their own functions and libraries
� Its editor has a built-in, though elementary, debugger
�� Main components of Scilab are:Main components of Scilab are:

–– An interpreterAn interpreter
–– Libraries of functions (procedures, macros)Libraries of functions (procedures, macros)
–– Interfaces for Fortran, Interfaces for Fortran, Tcl/TkTcl/Tk, C, C++, Java, , C, C++, Java, ModelicaModelica, and , and

LabVIEWLabVIEW——but not for Python and/or Rubybut not for Python and/or Ruby

� Which is “better,” Matlab or Scilab?
– Matlab outperforms Scilab in many respects, but Scilab is

catching up. The use of Matlab is motivated only in special
circumstances due to its high cost

Why use ScilabWhy use Scilab——personal personal

reasonsreasons

�� MatlabMatlab 6.5 (R13) was not compatible with my new Windows Vista 6.5 (R13) was not compatible with my new Windows Vista
laptop. laptop. MatWorksMatWorks, Inc., recommended to buy a new version, Inc., recommended to buy a new version

�� I refused to pay another license fee for I refused to pay another license fee for MatlabMatlab and went looking for and went looking for
openopen--source alternatives:source alternatives:
–– SageSage felt bulky, immature, and focused on pure mathematicsfelt bulky, immature, and focused on pure mathematics
–– PythonPython is not optimized for scientific and engineering tasksis not optimized for scientific and engineering tasks
–– Python(x,yPython(x,y)) messed up my PC when I installed it. Maybe I should I messed up my PC when I installed it. Maybe I should I

have tried have tried SciPySciPy instead?instead?
–– I grew tired of I grew tired of GNU OctaveGNU Octave before I figured out how to download before I figured out how to download

and install it (I want a tool to use, not to fight against)and install it (I want a tool to use, not to fight against)
–– ScilabScilab was the fifth alternative that I looked at. It gave no immediatwas the fifth alternative that I looked at. It gave no immediate e

problems, so I stuck to it. Later I have come across bugs and problems, so I stuck to it. Later I have come across bugs and
crashes/lockupscrashes/lockups——and become frustrated with its poor documentationand become frustrated with its poor documentation

Would I still select Scilab? Yes, I am impressed by Scilab and believe that the
competitors cause you gray hair as well—one way or another.

Why people donWhy people don’’t use t use

ScilabScilab

The following are some comments about Scilab and open-source
software in general that I have come across:

• “Scilab? Never heard of it”
• “Octave is closer to Matlab”
• “As a company we have to use software that will be supported ten

years from now”
• “It doesn’t have the toolboxes that we need”
• “There is a cost involved in shifting to a new software tool, even if

the tool is gratis”
• “Training and documentation support is poor”
• “There are no interfaces for other software tools that we use”
• “It seems to be rather slow”

Conclusion: Scilab, like other open-source programs, lacks credibility
in the eyes of users—particularly professional users. The situation is
similar with various excellent Linux distros and the LibreOffice office
package. Users trust products that have to be paid for

Scilab advantagesScilab advantages

�� Numeric computing is better suited for complex tasks than symbolNumeric computing is better suited for complex tasks than symbolic ic
computingcomputing

�� Not all mathematical problems have closed form solutions, numeriNot all mathematical problems have closed form solutions, numeric c
computing will therefore always be neededcomputing will therefore always be needed

�� Scilab is similar to Scilab is similar to MatlabMatlab and keeps developing even closer. It is and keeps developing even closer. It is
quite easy to step from one to the otherquite easy to step from one to the other

�� Scilab requires less disk space than Scilab requires less disk space than MatlabMatlab and GNU Octaveand GNU Octave
�� It includes a It includes a MatlabMatlab--toto--ScilabScilab translatortranslator (.m files to .(.m files to .scisci files)files)
�� Data plotting is said to be simpler than with GNU Octave (but thData plotting is said to be simpler than with GNU Octave (but the e

trend is toward more complex handle structures)trend is toward more complex handle structures)
�� The The XcosXcos toolbox installs automatically with Scilab, be it, that toolbox installs automatically with Scilab, be it, that XcosXcos is is

not compatible with not compatible with SimulinkSimulink
�� Scilab installs without immediate problems on Windows computersScilab installs without immediate problems on Windows computers
�� Scilab is freeScilab is free——if your wasted time and frustrations are worth if your wasted time and frustrations are worth

nothing. The fight for a limited number of expensive licenses nothing. The fight for a limited number of expensive licenses
((MatlabMatlab, , MathematicaMathematica, etc.) is not an issue in professional life, etc.) is not an issue in professional life

☺

Scilab disadvantagesScilab disadvantages

�� Numeric computing introduces rounding errors, contrary to symbolNumeric computing introduces rounding errors, contrary to symbolic ic
computingcomputing

�� The learning effort required by numeric computing is higher thanThe learning effort required by numeric computing is higher than for for
symbolic computing symbolic computing

�� Scilab Scilab lacks a unified tutorial and/or userlacks a unified tutorial and/or user’’s manuals manual. You . You ““try and crytry and cry””
and waste time searching for information on its use*and waste time searching for information on its use*

�� In some cases Scilab executes much slower than In some cases Scilab executes much slower than MatlabMatlab and GNU and GNU
Octave (improvements are said to be under way)Octave (improvements are said to be under way)

�� ScilabScilab’’s tools for creating GUIs are poor compared with s tools for creating GUIs are poor compared with MatlabMatlab
�� The Help Browser is very formal and of little use to The Help Browser is very formal and of little use to newbiesnewbies
�� Scilab hasScilab has bugs bugs and tends toand tends to crash/lockupcrash/lockup (it happens to Bill Gates (it happens to Bill Gates

as well. Often)as well. Often)
�� OnOn--line support from line support from EqualisEqualis costs $495 or more per annum (the costs $495 or more per annum (the

French prefer $ to French prefer $ to €€))

�

*) Scilab is not alone. The open-source community has a poor track record in
documentation because “paperwork” does not bring recognition.

Terminology: Terminology: ““functionfunction””

The C programming language brought confusion with its
unrestricted use of the term “function” and this is repeated in
Scilab. The term refers to (at least):

• Mathematical functions in general
• Scilab’s built-in functions
• User defined functions (UDF)

I would prefer the terms function, macro (or procedure), and
subroutine respectively (protests form dogmatic programmers are
overruled). Sometimes I talk about subroutine, but it is not always
possible. For instance, function is the term that must be used to
define a UDF in Scilab. And there is also the risk of adding to the
bewilderment by applying own terminology. The confusion
remains...

�

Intro to problems (1/3): Intro to problems (1/3):

crashes & lockupscrashes & lockups

Processor loads of this
magnitude are normal during
computer startup. However, this
is the situation after Scilab had
crashed and I had closed it.
“WScilex.exe” had another of its
lockups and required to be
closed with the Task Manager
(or by rebooting the computer).

The Scilab team’s standard
answer to problems like this is
to make sure that the
computer’s drivers are up-to-
date. It has not worked for my
Windows Vista PC.

Intro to problems (2/3): Intro to problems (2/3):

new releases*new releases*

�� With Scilab 5.2 came a problem that I did not experience with With Scilab 5.2 came a problem that I did not experience with
version 5.1.1: Copyversion 5.1.1: Copy--pasting from Scilabpasting from Scilab’’s Editor to PowerPoint s Editor to PowerPoint
frequently caused the latter to frequently caused the latter to crashcrash. The bug has been fixed. The bug has been fixed

�� With Scilab 5.3.0 I found that the paths With Scilab 5.3.0 I found that the paths File/Open file in...File/Open file in... and and
File/Save file in...File/Save file in... on the Editor were unresponsiveon the Editor were unresponsive

�� Some scripts that I originally wrote using Scilab 5.1.1 did not Some scripts that I originally wrote using Scilab 5.1.1 did not work work
with Scilab 5.3.0, and GUIs on 5.3.2 are a real pain down therewith Scilab 5.3.0, and GUIs on 5.3.2 are a real pain down there

�� Typically larger updates come with bugs and are quickly followedTypically larger updates come with bugs and are quickly followed by by
minor minor ““bug fixbug fix”” updates (a.k.a. patches). Scilab 5.3.1 emerged within updates (a.k.a. patches). Scilab 5.3.1 emerged within
three months of 5.3.0. This is universal in the software businesthree months of 5.3.0. This is universal in the software business s

�� It is wise to It is wise to keep an old Scilab versionkeep an old Scilab version until you know that the new until you know that the new
release can be trusted (I was happy I had kept version 5.1.1 wherelease can be trusted (I was happy I had kept version 5.1.1 when n
GUIs on 5.3.1 & 5.3.2 gave me problems)GUIs on 5.3.1 & 5.3.2 gave me problems)

�

*) Various Scilab versions are mentioned. I have worked with Scilab 5.1.1 -
5.3.2. Scilab 5.3.3 came too late to be considered.

Intro to problems (3/3): Intro to problems (3/3):

ATOMS and nerdsATOMS and nerds

�� ATOMS is ATOMS is ScilabScilab’’ss system for system for
downloading and installing userdownloading and installing user--
developed toolboxes. It has given me developed toolboxes. It has given me
real gray hairreal gray hair

�� I installed two toolboxes and I installed two toolboxes and ScilabScilab plots plots
became a mess. Here you can see what became a mess. Here you can see what
the later discussed rotation surface the later discussed rotation surface
looked like with toolboxes installedlooked like with toolboxes installed

�� I found what caused it after reinstalling I found what caused it after reinstalling
Windows and the toolboxes. It took me Windows and the toolboxes. It took me
days to get all programs running days to get all programs running

�� The idea of user contributions is basically The idea of user contributions is basically
sound, but there is sound, but there is a risk with nerdsa risk with nerds that that
have more zeal than ability and tenacity have more zeal than ability and tenacity
to properly test their programsto properly test their programs �

Embedded informationEmbedded information

� Scilab comes with some built-in information structures. The major
ones are:
– The Help Browser that can be accessed from various windows. Its utility

improved with Scilab 5.3.1 when demonstrations were included, but the
Help Browser is still a hard nut for newbies. It confuses by sometimes
referring to obsolete functions

– Demonstrations that can be accessed from the Console. Not really
tutorials and some of them act funny, some may cause Scilab to crash,
and others still ask for a C compiler

– Error messages displayed on the Console. Quite basic messages,
sometimes confusing, sometimes too brief

� What is really missing is an embedded tutorial (or even a user’s
manual of the Matlab style) that is updated with each Scilab release

Information on the Web Information on the Web

(1/2)(1/2)
� The main portal is Wiki Scilab, <http://wiki.scilab.org/Tutorials>,

were most of the accessible tutorials are listed
� Scilab’s forge <http://forge.scilab.org/> is a repository of “work in

progress,” many of which exist only in name. Its set of draft
documents is valuable

� Wiki Scilab’s HowTo page <http://wiki.scilab.org/howto> has some
articles of interest

� Free sites:
– Scilab File Exchange website <http://fileexchange.scilab.org/>. A new

discussion forum managed by the Scilab team and “dedicated to easily
exchange files, script, data, experiences, etc.”

– Google discussion group at <http://groups.google.com/group/
comp.soft-sys.math.scilab/topics>

– MathKB <http://www.mathkb.com/>. Contains, among other things, a
Scilab discussion forum. Mostly advanced questions

– spoken-tutorial <http://spoken-tutorial.org/Study_Plans_Scilab/>.
Screencasts under construction by IIT Bombay. Scilab basics

Information on the Web Information on the Web

(2/2)(2/2)
– YouTube has some video clips on Scilab, but nothing really valuable
– Equalis <http://www.equalis.com>. By registering you gain free access

to the discussion forum
– <http://usingscilab.blogspot.com/> used to be a very good blog but is

now terminally ill. Worth checking the material that is still there
– Scilab India <http://scilab.in/> is basically a mirror of Scilab Wiki, with

added obsolete material and a less active discussion forum

� If you know German:
– German technical colleges produce helpful basic tutorials on Scilab

(better than their French counterparts). Search the Internet e.g. using
the terms “Scilab” + “Einführung” and limit the language option to
German

Conclusion: A lot of resources have gone into producing the existing
scattered documentation, but they have been uncoordinated and
have produced little relative the input effort. Lousy management!

BooksBooks

There is not a single good textbook in English on Scilab like you find in
abundance on Matlab. These are the books that I am familiar with:

• Beater, P.: Regelungstechnik und Simulationstechnik mit Scilab und
Modelica, Books on Demand GmbH, 2010. Basic control systems for
mechanical engineers. Scilab plays only a minor role in the book

• Das, V.V.: Programming in Scilab 4.1, New Age International, 2008.
Reference manual with uninviting layout, obsolete functions, and no
practical examples. Useless

• Chancelier, J.-P. et al.: Introduction á Scilab, Deuxième édition, Springer,
2007. An intermediate/advanced textbook with some engineering
applications. Approaching obsolescence

• Campbell, S.L. et al: Modeling and Simulation in Scilab/Scicos, Springer,
2006. Based on Scilab 3.1, over half of the book is on Scicos. Of some
use, but dull the way Springer and LaTeX make them

• Gomez, C. et al.: Engineering and Scientific Computing with Scilab,
Birkhäuser, 1999. Often referred to but outdated and of no use

�

On updates & literatureOn updates & literature

Scilab evolves rapidly and one frequently encounters obsolete
features. Functions are often declared obsolete, although Scilab still
may support them, and other functions are removed altogether.
There is obviously no collection of obsolete/removed functions and
their current equivalents (if any).

The Scilab team is slow with information on major updates. For
instance, the GUI interface is said to have been completely renewed
with version 5.x, but so far the only (poor) GUI description that I
have seen is for version 4.x. It’s almost three years now...

Rapid development is a reason to why the limited literature on Scilab
is mostly obsolete, sometimes outright misleading. I got a hands-on
experience with all the changes that had to be made to 5.1.1 scripts
before they agreed to run on version 5.3.x (and not all do)

�

Scilab learning obstaclesScilab learning obstacles

Learning Scilab can be frustrating to a person with limited previous
programming experience. The biggest hurdles are:

�

�� Lack of handsLack of hands--on tutorialson tutorials for Englishfor English--speaking speaking newbiesnewbies. The . The
situation is better, though not good, with some other languagessituation is better, though not good, with some other languages

�� Excessive number of Scilab functionsExcessive number of Scilab functions. There are some two thousand . There are some two thousand
of them. There are often numerous options to select between; somof them. There are often numerous options to select between; some e
of which work, some donof which work, some don’’t, some of which you know, most you dont, some of which you know, most you don’’tt

�� Unhelpful Help BrowserUnhelpful Help Browser. Even when you have a hunch of which . Even when you have a hunch of which
function to use, you cannot get it right because of the Help Brofunction to use, you cannot get it right because of the Help Browserwser’’s s
cryptic explanationcryptic explanation

�� Basic programming errorsBasic programming errors. Creating infinite loops, dividing by zero, . Creating infinite loops, dividing by zero,
using * instead of .* , etc. We all make them, there is no way using * instead of .* , etc. We all make them, there is no way
around them than by practicing. around them than by practicing. ““ÜÜbungbung machtmacht den Meister!den Meister!””

On the bright side...On the bright side...

�� ScilabScilab works! Despite my complaints it mainly does a fine jobworks! Despite my complaints it mainly does a fine job
�� It is a great thing that it is given away for free to all of us It is a great thing that it is given away for free to all of us who who

cannot afford expensive commercial simulation toolscannot afford expensive commercial simulation tools
�� It is a great thing that it is give away for free to all commercIt is a great thing that it is give away for free to all commercial and ial and

nonnon--commercial institutions that care about costcommercial institutions that care about cost--effectivenesseffectiveness
�� It is a free gift (though with restrictions*) to science and engIt is a free gift (though with restrictions*) to science and engineering ineering

and deserves support of us who happily download whatever comes and deserves support of us who happily download whatever comes
gratis on the Webgratis on the Web

�� It deserves support because It deserves support because ScilabScilab, like other open, like other open--source IT source IT
solutions, faces an uphill struggle against vast commercial intesolutions, faces an uphill struggle against vast commercial interests rests
and skeptical individualsand skeptical individuals

�� Long live the free and openLong live the free and open--source/access community!source/access community!

☺

*) Scilab is released under the French CeCILL license. The question is, is it
really a Free and Open-Source license that allows you to release a Scilab copy
under a new name, the way OpenOffice was turned into LibreOffice?

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

2. A first peek at Scilab2. A first peek at Scilab

What you face when trying to get What you face when trying to get
startedstarted——including including ““Scilab in 15 Scilab in 15
minutesminutes””

Return to Contents

Windows installation (1/3)Windows installation (1/3)

1. Download Scilab from
www.scilab.org
(Windows on the top,
other OSs below)

2. The right operating system
should be on top. Save the file,
typically it goes to your own
Downloads folder

Windows installation (2/3)Windows installation (2/3)

3. Scan the downloaded
file for viruses

4. Double-click on the
file to install Scilab,
follow the prompts

Inside the
Downloads file

Windows installation (3/3)Windows installation (3/3)

5. Scilab suggests that it
should install all
toolboxes (modules). Go
for it unless you are
really short of memory

6. Accept Scilab license
terms (you have no
option so why do they
ask?). Click Next as
many times as needed

7. You’re all set to use
Scilab (no need to
reboot the computer)

Note: Scilab does not
uninstall an old version

Linux installationLinux installation

� Click: Applications/Ubuntu
Software Center/Science &
Engineering and scroll down to
Scilab; then just Click Install

� Only Scilab 5.3.0 beta-2 is
available at the repository

� For the latest version you must
go to Scilab's web site and
download Linux binaries. The
installation, however, is a
trickier question and I do not
cover it here (have not tried it)

This discussion is valid for Ubuntu
10.04 LTS with the GNOME
desktop*

*) Ubuntu 11.04 with Unity has been
released, but I have not gone for it

The Console The Console

Menu bar

Toolbar

Command prompt

If no shortcut icon has been
created: Click: Start\All
Programs\scilab\scilab (do
not select Scilab Console)

Click on Scilab’s shortcut
icon to open the Console
(Command Window in
Matlab*):

*) The Console has other names as well: Workspace, Startup/Main Window, etc.

Folks:Folks:

Here it comes, the lesson on
MathCad that Jim gave me back in
1991, transformed to Scilab. A
lecture worth gold in three slides

Scilab in 15 minutes Scilab in 15 minutes

(1/3): write a script(1/3): write a script

Recall how Jim taught me MathCAD in 15 minutes? Now we’ll repeat
that lesson in Scilab. We do it by using the Editor (SciNotes):

Step 1: On the Console, Click
the leftmost icon on the
toolbar. The Editor pops up

Step 2: Define whatever
variables your function needs
(row 1). Note comment (//…)

Step 4: Finally, write the
plot command (row 3)

Step 3: Next, define the (sine)
function in case (row 2)

Scilab in 15 minutes Scilab in 15 minutes

(2/3): save and plot(2/3): save and plot

Step 6: Finish by running
(executing) the script by a
Click the Execute icon (a
second one came with 5.3.2)

Step 7: Up pops the
Graphics Window with the a
plot of the defined equation

Did you have problems or get an
error message on the Console? Don’t
worry, we’ll return to everything
later. Jump to Examples 1-1 & 1-2 if
you are in a hurry.

Step 5: Save the script by
Clicking on the Save icon
and name it e.g. foo.sce

Scilab in 15 minutes Scilab in 15 minutes

(3/3): discussion(3/3): discussion

�� ScilabScilab’’s user interface consists of three main windows:s user interface consists of three main windows:
–– The The ConsoleConsole, which pops up when Scilab is opened and on which , which pops up when Scilab is opened and on which

it outputs textual data (numeric answers, error messages, etc.)it outputs textual data (numeric answers, error messages, etc.)
–– The The EditorEditor ((SciNotesSciNotes), which is the main tool for writing, saving,), which is the main tool for writing, saving,

and executing scripts (programs)and executing scripts (programs)
–– The The Graphics WindowGraphics Window, on which Scilab presents plots, on which Scilab presents plots

�� The recipe for using The recipe for using ScilabScilab is the one that Jim taught me:is the one that Jim taught me:
– First you declare the variables that are needed
– Then you define the function that you want to plot
– And finally, plug in the plot instruction

This exercise showed the essentials of Scilab in engineering
applications:

That was Scilab
Let’s go pizza☺

The ConsoleThe Console’’s menu bar s menu bar

(1/6): File(1/6): File
Among the functions under the
File drop-down menu that you
will quickly encounter are:

Execute...: From here you can
run Scilab scripts (or from the
Editor, as seen later)

Open…: Similar to the Open…
command in MS Office
programs

Change current directory…,
Display current directory:
Pay attention to those two, they
will be needed to tell Scilab
where to look for a script that
you want to open

The ConsoleThe Console’’s menu bar s menu bar

(2/6): Edit(2/6): Edit

The functions under the Edit drop-
down menu are self-explanatory.

The Cut, Copy, and Paste
commands have their own icons in
the toolbar. You also find them by
right-clicking on the PC mouse

Be careful with Empty clipboard.
You may not be able to use Copy
after clicking it! (Happened to me)

I have used Select all a lot to
copy-paste the demos in this
presentation

The ConsoleThe Console’’s menu bar s menu bar

(3/6): Preferences(3/6): Preferences
The functions under the
Preferences drop-down menu
are quite similar to what you
can find on a PC

I can only guess that Clear
History is similar to Clear
Private Data in Firefox, but
there is no Show History
alternative and Help is not
helpful

Clear Console empties the
console. You achieve the same
by pressing F2 Change visual appearance

of the Console

The ConsoleThe Console’’s menu bar s menu bar

(4/6): Control(4/6): Control

I did not need the Control
drop-down menu a single time
while doing this presentation,
so obviously it is not very
useful

My guess would be that the
Resume , Abort, and Interrupt
alternatives give the user a
way to interfere with the
execution of a program The Help Browser is not

very helpful and it does
not even recognize the
Interrupt command

The ConsoleThe Console’’s menu bar s menu bar

(5/6): Applications(5/6): Applications

SciNotes: Opens Scilab’s Text
Editor (same as Launch
SciNotes in the toolbar)

Xcos: Opens Xcos

Matlab to Scilab translator:
Used to translate a Matlab .m-
file to a Scilab .sci file

Atoms: Opens the online
module manager

Variable Browser: Opens a list
with variables (same as the
browsevar; command)

Command History: Opens a list
with commands used

The ConsoleThe Console’’s menu bar s menu bar

(6/6): Help alternatives(6/6): Help alternatives

Scilab Demonstrations: Shows
demos with few comments (same command as
the cogwheel in the toolbar). At least the
GUI/Uicontrols 2 demo causes Scilab to crash

Scilab Help: Same as the
question mark icon in the
toolbar Scilab Web

resources

The ConsoleThe Console’’s toolbars toolbar

Launch Editor: Opens Scilab’s
Editor (SciNotes, another part
of its Integrated Development
Environment (IDE). Basic
tutorials seldom stress the fact
that normally we work with
(write, edit, save, run)
executable Scilab scripts on the
Editor, not on the Console. The
Editor is presented a few slides
below

Change Current Directory: It
can also be found under File
in the menu bar. You need it to
point out from which directory
(folder) Scilab should search
for a script that you want to
execute (run)

The Atoms, Xcos, and Demonstrations
icons came with Scilab 5.2

The Help Browser (1/3)The Help Browser (1/3)

In the Console, Click on
the Help Browser icon
to open it

The Help Browser is a
brief “encyclopedia” of
Scilab’s main features and
functions. Explanations of
functions are augmented
by examples (see next
slide for a demo), but this
does not compensate for
a good tutorial

Help discussions become
more readable if you print
them as PDF files

The Help Browser (2/3)The Help Browser (2/3)

1. In the script box with
examples, Click on the
Execute icon to see how the
scripts executes (not all work)

2. The Graphics
Window with the plot
pops up (in this cases it
briefly flashes the first
plot)

3. Click on the Editor icon
and the script is transferred
to Scilab’s text Editor where
you can play with it (must be
saved before it can be run)

The Help Browser (3/3):The Help Browser (3/3):

help help function_namefunction_name
To find the proper use
of any function—
assuming that the
name is known—the
Help Browser can be
opened from the
Console by entering
the command help
function_name
command, in the
shown case help
det() (the brackets
can be omitted). The
alternative is to open
the Browser with the
Help icon

The Editor (The Editor (SciNotesSciNotes))

�� The (Text) Editor is where The (Text) Editor is where
executable Scilab scripts are executable Scilab scripts are
written, maintained & runwritten, maintained & run

�� Open the Editor by clicking Open the Editor by clicking
on the on the Launch Launch SciNotesSciNotes icon icon
in the Console, or by clicking: in the Console, or by clicking:
ApplicationsApplications\\SciNotesSciNotes

�� A Scilab script is a text file A Scilab script is a text file
with a name of the type with a name of the type
.. scesce (the alternative (the alternative
.. scisci is also used but is also used but
.. scesce is the default)is the default)

�� It is good practice to use It is good practice to use
scripts also for small tasks.scripts also for small tasks.
Then all Then all ““projectsprojects”” are saved are saved
and commented, ready for and commented, ready for
reusereuse

But don’t forget to create a
properly organized archive
for your programs!

Execute
Save & execute

Editor menu bar (1/5): Editor menu bar (1/5):

FileFile

�� Recent filesRecent files gives quick access to gives quick access to
recently edited scriptsrecently edited scripts

�� NewNew opens a second tab for a opens a second tab for a
new script to be editednew script to be edited

�� OpenOpen opens a saved script into opens a saved script into
the Editorthe Editor

�� Open file in...Open file in... and and Save file in...Save file in...
do not workdo not work in Scilab 5.3in Scilab 5.3

�� PrintPrint is an ordinary print is an ordinary print
commandcommand

�� CloseClose closes the file in casecloses the file in case

File commands that you are most
likely to run into:

Commands under Edit are
mostly self-explanatory. Note
however the following four:

Shift Right/Left:
Indent/unindent a row by one
step (this pair should be on the
toolbar)

Comment/Uncomment Selection:
Add/delete a comment

Editor menu bar (2/5):Editor menu bar (2/5):

EditEdit

The Preferences drop-down
menu allows you adjust Editor
settings to your liking

I had difficulties reading scripts
on the Editor (poor contrast
with default settings) and used
Set Colors... and Set Font to
change from default values

Editor menu bar (3/5):Editor menu bar (3/5):

PreferencesPreferences

Users can send bug reports to Scilab’s development team (link at
<www.scilab.org>). I filed the following report (Bug 8802):

“Default color settings on the Editor produce poor contrast ... Changing
font colors is tedious due to the excessive number of options under
Preferences\Set colors... (an overkill, you could say). I would suggest
default settings with just four colors (red, green, blue and black). ”

To which I got this answer:

“You can modify more easily the colors configuration in modifying the
file: C:\Documents and Settings\Johnny\Application Data\Scilab\
scilab-5.3\scinotesConfiguration.xml (or a path which is similar) ”

I found scinotesConfiguration.xml under C:\Program Files\
scilab-5.3\modules\scinotes\etc\. XML color codes must be
changed in this file. I wish you good luck

Editor menu bar (4/5):Editor menu bar (4/5):

Preferences, commentPreferences, comment

The Execute drop-down
window contains three options:

... file with no echo: A
simple execute command
(same as clicking the Execute
icon on the toolbar)

... file with echo: Executes
the script and echoes it (shows
it) on the Console

... until the caret, with
echo: Beats me, what it means

Editor menu bar (5/5):Editor menu bar (5/5):

ExecuteExecute

The Execute commands used
to be simpler. I have no idea
why they changed them this
way. My recommendation is
to use the Execute icon on
the toolbar (see next slide)

Editor toolbarEditor toolbar

New... Opens a second
tab for a new script to
be edited (the same
command can be found
under File)

The Save icon looks like the
Dutch tricolor, but you’ll get
used to it. The next one is
Save as...

The Undo/Redo arrows
are quite normal

The Paste icon is a
bit unusual (French?)

The Execute (or
Save & execute)
icon is what you
normally use to run
a script

Ready to goReady to go

Your desktop
should now look
something like
the one here. As
we have seen,
both the Editor
and the Console
are needed since
when the
scripts—created
on the Editor—
are executed
numeric outputs
is returned to the
Console

Console (command window)

Editor (SciNotes)

One more thing (1/2):One more thing (1/2):

docking windowsdocking windows
�� It is possible to It is possible to dock dock Scilab windows; i.e., to form a unified Scilab windows; i.e., to form a unified

workspace similar to the one in workspace similar to the one in MatlabMatlab. Here is how to do it:. Here is how to do it:

Console Editor

Press the left
mouse button
on the
darkened bar of
an active
window, drag
over another
window and
release. The
next page
shows one case

One more thing (2/2):One more thing (2/2):

docking windowsdocking windows

Console Editor

Help Browser
Graphics Window

Each
window
part has an
arrow in
the upper
right-hand
corner, by
which you
can release
it from
docking

On scripts and functionsOn scripts and functions

�� Scilab has two command types:Scilab has two command types:
–– ScriptsScripts. A set of commands used to automate computing. Script . A set of commands used to automate computing. Script

commands are normally returned to the Console, but plots are commands are normally returned to the Console, but plots are
returned to the Graphics Windowreturned to the Graphics Window

–– FunctionsFunctions (macros). Short programs that interface with the (macros). Short programs that interface with the
environment through input and output variables. A list of environment through input and output variables. A list of
common common builtbuilt--in functionsin functions is given on the next slide. Functions is given on the next slide. Functions
defined by the user can either be local (integrated in a script)defined by the user can either be local (integrated in a script) or or
global (stored as a separate file and accessible to any script)global (stored as a separate file and accessible to any script)

–– I may use the term I may use the term ““codecode”” to make general references to either to make general references to either
scripts or functionsscripts or functions

�� As was already saidAs was already said——and will repeatedand will repeated——one should rather one should rather
create scripts and functions on the (Text) Editor (create scripts and functions on the (Text) Editor (SciNotesSciNotes))

BuiltBuilt--in functionsin functions

Below is a list of common math functions in Scilab. A full list of built-in
functions can be found under Help\Elementary Functions, which also
explains requirements on arguments (there are both mandatory and
optional arguments).

Square root, e.g. sqrt(2) / exponentsqrt(), exp()

Sum sum()

Minimum / maximum valuemin(), max()

Absolute value, e.g. abs(sinc(x)) / signabs(), sign()

Real & imaginary parts of a complex freal(f), imag(f)

Hyperbolic functionssinh(), cosh(), tanh(), coth()

Inverse hyperbolic functionsasinh(), acosh(), atanh()

Arc functionsasin(), acos(), atan()

Trigonometric functions, e.g. sin(.2*%pi)sin(), cos(), tan(), cotg()

Predefined variables & Predefined variables &

constants constants

PiPiππ = 3.1415927= 3.1415927……..%pi%pi

NapierNapier’’ s constant es constant ee = 2.7182818e = 2.7182818……..%e%e

Precision (machine dependent)Precision (machine dependent)εε = 2.22 = 2.22 ·· 1010--1616%%epseps

Infinite (not mathematically infinite)Infinite (not mathematically infinite)%%infinf

Not a NumberNot a Number%%nannan

Polynomial variablePolynomial variabless%s%s

Boolean variableBoolean variablefalsefalse%f, %F%f, %F

Boolean variableBoolean variabletruetrue%t, %T%t, %T

Polynomial variablePolynomial variablezz%z%z

Imaginary unitImaginary uniti = i = √√--11%i%i

Main predefined and write-protected variables/constants are:

Scilab operators (1/2)Scilab operators (1/2)

The list contains the majority of operators used in Scilab. Many will be
explained in detail later.

Non-conjugate transpose. '

Conjugate (matrix) transpose, string delimiter*'

Instruction, argument or column separator,

Addition, subtraction+ , -

Multiplication, element-by-element multiplication* , .*

The pair of left/ right parenthesis is used for various purposes()

Vector or matrix definition concatenation, transposed matrix[] , [] '

End of expression, row separatorEnd of expression, row separator;

*) Both simple (') and double (") quotes are allowed to define character strings

Scilab operators (2/2)Scilab operators (2/2)

Right division, element-by-element right division/ , ./

Left division, element-by element left division\ , .\

KroneckerKroneckerright and left divisionright and left division./. , .\.

Power (exponent), elementPower (exponent), element--byby--element powerelement power^ or ** , .^

KroneckerKroneckerproductproduct.*.

Logical NOT~

Equal to, equal or greater than, equal or less than, greater
than, less than, not equal to (two alternatives)

==, >=, <=, >, <,
< >, ~=

Logical AND&

Logical ORLogical OR|

Computing terminology: Computing terminology:

a brief introductiona brief introduction

�� ArgumentsArguments: Values provided as inputs to a command (input : Values provided as inputs to a command (input
arguments) or returned by the command (output arguments)arguments) or returned by the command (output arguments)

�� CommandCommand: A user: A user--written statement that provides instructions to the written statement that provides instructions to the
computer (computer (““statementstatement”” is an often used alternative)is an often used alternative)

�� DefaultDefault: Action taken or value chosen if none has been provided: Action taken or value chosen if none has been provided
�� DisplayDisplay: To output a listing of text information on the computer : To output a listing of text information on the computer

screenscreen
�� EchoEcho: To display commands or other input typed by the user: To display commands or other input typed by the user
�� ExecuteExecute: To run a program or carry out the instructions specified in a : To run a program or carry out the instructions specified in a

commandcommand
�� PrintPrint: To output information on a computer printer (often confused : To output information on a computer printer (often confused

with with ““displaydisplay””))
�� ReturnsReturns: Results provided by the computer in response to a : Results provided by the computer in response to a

commandcommand

On On ““handleshandles””

�� In graphics software the word handle refersIn graphics software the word handle refers
to the points placed around a figure or plotto the points placed around a figure or plot
that allow you to manipulate the objectthat allow you to manipulate the object
(see figure)(see figure)

�� A A MatlabMatlab tutorial gives the following explanation that is also valid fortutorial gives the following explanation that is also valid for
Scilab: Scilab: ““Whenever Whenever MatlabMatlab creates a graphics object, it assigns an creates a graphics object, it assigns an
identifier (called identifier (called handlehandle) to it. You can use this handle to access the) to it. You can use this handle to access the
objectobject’’s properties.s properties.””

�� You need handles to edit graphical plots beyond the means offereYou need handles to edit graphical plots beyond the means offered d
by basic plot functions (by basic plot functions (plot2d()plot2d(), , plot3d()plot3d(),, etc.) etc.)

�� WeWe’’ll return handles when discussing ll return handles when discussing graphics & plotting (Ch. 7)graphics & plotting (Ch. 7)

You will often see ScilabYou will often see Scilab’’s Help Browser refer to a s Help Browser refer to a ““handle,handle,”” but but
Help does not provide a helpful explanation of the term. Here isHelp does not provide a helpful explanation of the term. Here is a a
brief account:brief account:

Check handlesCheck handles

with with gcfgcf()()
�� The function The function plot2d()plot2d()

produces the plot belowproduces the plot below
�� The command The command gcfgcf()() gives gives

the list to the rightthe list to the right
�� The list is the handle for the The list is the handle for the

defined function (Scilab defined function (Scilab
literature also refers to literature also refers to
individual rows in the list by individual rows in the list by
the term the term ““handlehandle””))

-->x = linspace(0,4*%pi,100); plot2d(x,0.5*cos(x))

-->f = gcf()

f =

Handle of type "Figure" with properties:
==
children: "Axes“
figure_position = [567,485]
figure_size = [628,592]
axes_size = [610,460]
auto_resize = "on“
viewport = [0,0]
figure_name = "Graphic window number %d“
figure_id = 0
info_message = "“
color_map= matrix 32x3
pixmap = "off“
pixel_drawing_mode = "copy“
anti_aliasing = "off“
immediate_drawing = "on“
background = -2
visible = "on“
rotation_style = "unary“
event_handler = "“
event_handler_enable = "off“
user_data = []
tag = ""

foofoo

�� The term The term ““foofoo”” is used in many tutorials. It may be confusing is used in many tutorials. It may be confusing
if you are not intimately familiar with programmingif you are not intimately familiar with programming

�� Simply stated, Simply stated, foofoo can be interpreted as can be interpreted as ““something comes something comes
here.here.”” The professional expression is The professional expression is placeholder nameplaceholder name, also , also
referred to as referred to as metasyntactic variablemetasyntactic variable

�� Example:Example:

�� Alternative placeholder names that you may come across are Alternative placeholder names that you may come across are
foobarfoobar, , barbar, and , and bazbaz. I prefer to use dots (....). I prefer to use dots (....)

for k = 1:2:n
foo;

end

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

3. Playing with the 3. Playing with the

Console & EditorConsole & Editor

Those awkward first steps; a bit Those awkward first steps; a bit
about what Scilab doesabout what Scilab does

Return to Contents

Console keyboard Console keyboard

shortcutsshortcuts

In the Help Browser,
Click: Console/console
for a list of keyboard
shortcuts

Keyboard shortcuts allow
speedier execution of
commands, but require
frequent use to stay
memorized

The simplest ones to
memorize are:
F1 = Open Help Browser
F2 = Clear Console

Simple calculationsSimple calculations

� The Console can be used as a
calculator by writing arithmetic
expressions after the command
prompt and pressing Enter

� If no variable name is given, Scilab
uses the inbuilt variable ans

� When a variable name is given
(here alpha) it will be used
instead. π is an inbuilt variable
(constant) represented by %pi

� Expressions can be written on the
same line by separating them with
a comma (the warning can be
ignored)

� Scilab displays an executed
command unless it ends with a
semicolon (;)

List of variables (1/2)List of variables (1/2)

The command
who (+ Enter)
produces a list of
some Scilab
variables. At least
on my Windows
Vista laptop the
columns are right
aligned (French
logic or a bug?).
Note that
variables from the
previous example
are displayed

List of variables (2/2)List of variables (2/2)

� The command browsevar
opens the Variable Browser
window (it used to be called
Browser Variables, thus the
command browsevar)

� The list that pops up gives
information about the type
and size of each variable

� Recall that the Variable
Browser also can be called
via the menu bar:
Applications/Variable
Browser

Entering numbersEntering numbers

� Scilab allows numbers to be
entered in different ways, as
shown in this example

� Some expressions have
alternate forms. For instance,
there are three power
expressions (^), (**) and (.^),
but Scilab picks them in that
calling order

� Note that e and π are given with
seven decimals, which puts
limits to the achievable accuracy
(a function for double precision
does exist)

� Consult Help if you need to
change the display format

� Note: From now on I’ll show
only the contents of the Console
(on light yellow background)

 -->0.1, 1e-1, 2^3, exp(1), %pi
 ans =

 0.1
 ans =

 0.1
 ans =

 8.
 ans =

 2.7182818
 %pi =

 3.1415927

Computing precision Computing precision

(1/2)(1/2)
Look at the two examples to the
left. In both cases we are
computing 1-5*0.2, but in two
different ways

In the first case the answer is
correct (0)

In the second case the answer is
5.55*10-17, which quite obviously
is incorrect

The reason is that numeric
computing has finite precision
(rounding errors)

We must take this limitation into
account in Scilab simulations

 -->a = 1 - 5*0.2
 a =

 0.

 -->b = 1 - .2 - .2 - .2 - .2 - .2
 b =

 5.551D-17

 -->a = sin(%pi)
 a =

 1.225D-16

 -->0.1 == 1.0 - 0.9
 ans =

 F

Computing precision Computing precision

(2/2)(2/2)

Here are two more cases where finite precision
shows up. The answers should be 0 (zero) and T
(True) respectively (Note that 1.225D-15,
1.225e-16, 1.225*10^-16 and 1.225*10-16

express the same thing)

Assume that the mentioned variable a is part of
a script with an if...then...else...end structure
(conditional branching will be covered in Chapter
11). The result is that alternative 1 is never
executed because a is never exactly zero

We must test a with some finite bounds, e.g.:

if abs (a) < 1e- 6 then
......

foo
if a == 0 then

alternative 1
else

alternative 2
end

|a| < 10-6

Displaying graphicsDisplaying graphics

� The Console can also be used
to give commands for
plotting graphics:

� The graphical picture is
plotted in the Graphics
Window that pops up
automatically (more in Ex. 1)

� The meaning of the entered
code will become clear as we
proceed

 -->x = linspace(-%pi,%pi,40);

 -->y = linspace(-%pi,%pi,40);

 -->plot3d(x,y,sinh(x')*cos(y))

Command line editingCommand line editing

�� Suppose we make a mistake when Suppose we make a mistake when
entering the command line and entering the command line and
Scilab returns an error messageScilab returns an error message

�� Instead of retyping the whole line, Instead of retyping the whole line,
we can press the up arrow () on we can press the up arrow () on
the keyboard to return the line the keyboard to return the line
and correct the mistakeand correct the mistake

�� In the shown example the In the shown example the
function for the square root, function for the square root, sqrtsqrt()(), ,
was first erroneously typed was first erroneously typed sqtsqt ()()

�� Note that this is just one of Note that this is just one of
several alternatives for command several alternatives for command
line editingline editing

|̂

 -->a = 2; b = sqt(a)

 !--error 4
 Undefined variable: sqt

 -->a = 2; b = sqrt(a)
 b =

 1.4142136

-->a = 2; b = sqt(a)

|̂ Press up
arrow

Correct

Editing demoEditing demo

� Evaluate the function

log(s2 – 2s·cos(π/5) + 1)

for s = 0.5, 0.95, and 1

� Do not rewrite the function, use
instead the up arrow to edit
previous commands!

-->s=.5; log(s^2-2*s*cos(%pi/5)+1)
ans =

- 0.8187489

-->s=.95; log(s^2-2*s*cos(%pi/5)+1)
ans =

- 1.006851

-->s=1; log(s^2-2*s*cos(%pi/5)+1)
ans =

- 0.9624237

Complex numbersComplex numbers

� Scilab handles complex
numbers as easily as real
numbers

� The variable %i stands for √-1

� The first example shows how
Scilab evaluates some
functions with the complex
argument x = 2 + 3i

� An imaginary sin() argument
produces a result!

� The second example shows
how Scilab does arithmetic
operations with two complex
equations, x and y

 -->x = 2 + 3*%i;

 -->abs(x)
 ans =

 3.6055513

 -->real(x)
 ans =

 2.

 -->imag(x)
 ans =

 3.

 -->sin(x)
 ans =

 9.1544991 - 4.168907i

 -->atan(imag(x), real(x))
 ans =

 0.9827937

-->x = 2 + 3*%i; y = 1 - 1*%i;
-->z1 = x –y
z1 =

1. + 4.i

-->z2 = x * y
z2 =

5. + i

-->z3 = x / y
z3 =

- 0.5 + 2.5i

VectorizedVectorized functionsfunctions

� Scilab functions are vectorized, meaning
that functions can be called with vectorial
arguments

� In the shown example, first a column
vector called t is created

� Next the vector is used as argument in
the sin() function, in the expression for y

� If the values of t are of no interest, the
printout can be avoided by putting a
semicolon after the expression for t:

t = [0:5]’; y = sin(0.2*t)

�� Vectors will be discussed in connection Vectors will be discussed in connection
with matrices in with matrices in Chapter 5Chapter 5

 -->t = [0:5]'
 t =

 0.
 1.
 2.
 3.
 4.
 5.

 -->y = sin(0.2*t)
 y =

 0.
 0.1986693
 0.3894183
 0.5646425
 0.7173561
 0.8414710

Long command linesLong command lines

�� Long command expressions Long command expressions
can be divided among two or can be divided among two or
more linesmore lines

�� One tool for that purpose is One tool for that purpose is
two or three periodstwo or three periods (..) to (..) to
indicate that the statement indicate that the statement
continues continues

�� Long matrix expressions can Long matrix expressions can
be written on separate lines be written on separate lines
by omitting the semicolon that by omitting the semicolon that
normally ends a row (bottom)normally ends a row (bottom)

-->p=1+2+3+4+5+6+7+8+9+10+11+12+...
-->13+14+15+16+17+18+18+19+21+22+23+24+25
p =

323.

-->q = 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ...
-->1/7 + 1/8 + 1/9 + 1/10 + 1/11 + 1/12
q =

2.1032107
 -->A = [1 2 3 4 5
 -->6 7 8 9 10
 -->11 12 13 14 15]
 A =

 1. 2. 3. 4. 5.
 6. 7. 8. 9. 10.
 11. 12. 13. 14. 15.

-->s=%s;
-->num = poly([0,-1,-2],'s')
num =

2 3
2s + 3s + s

-->den=poly([-.5,-1.5,-2.5,-3.5],'s')
den =

2 3 4
6.5625 + 22s + 21.5s + 8s + s

-->fr=num/den
fr =

2 3
2s + 3s + s

--
2 3 4

6.5625 + 22s + 21.5s + 8s + s

PolynomialsPolynomials

�� You run into polynomials e.g. if you You run into polynomials e.g. if you
use frequency domain (stateuse frequency domain (state--space) space)
analysis in control engineeringanalysis in control engineering

�� Here Here s = %ss = %s is the is the seedseed that defines that defines
the polynomial of the polynomial of ““ss””. An alternative, . An alternative,
often used form of the seed often used form of the seed
definition is definition is s = (0,s = (0,’’ss’’))

�� The polynomials can be defined The polynomials can be defined
through their root vectorsthrough their root vectors

�� Scilab translates the roots to their Scilab translates the roots to their
respective polynomialsrespective polynomials

�� When we divide the When we divide the numnum polynomial polynomial
by the by the denden polynomial, Scilab polynomial, Scilab
presents the full polynomial presents the full polynomial
expressionexpression

Roots of polynomialsRoots of polynomials

 -->s=%s;

 -->z=roots(6.5625+22*s+21.5*s^2+8*s^3+s^4)
 z =

 - 0.5
 - 1.5
 - 2.5
 - 3.5

 -->s=%s;

 -->x=roots(2*s+3*s^2+s^3)
 x =

 0
 - 1.
 - 2.

�� Determining roots (zeros) of Determining roots (zeros) of
polynomials can be a tedious polynomials can be a tedious
undertakingundertaking

�� However, Scilab has a handy However, Scilab has a handy
tool for the task in the form of tool for the task in the form of
the the roots()roots() functionfunction

�� To the right the polynomials To the right the polynomials
on the previous slide have on the previous slide have
been determinedbeen determined

�� Note that the seed Note that the seed s=%ss=%s has has
to be defined here as wellto be defined here as well

Poles and zeros: Poles and zeros: plzrplzr()()

�� The The plzrplzr()() function function
plots the poles and plots the poles and
zeros of a polynomialzeros of a polynomial

�� The The syslinsyslin()() function function
used here will be used here will be
discussed laterdiscussed later

�� When pressing When pressing EnterEnter
after the after the plzr(sysplzr(sys))
command, the command, the
Graphics Window Graphics Window
opens and displays the opens and displays the
plot (The Graphics plot (The Graphics
Window will be Window will be
discussed in discussed in Example Example
11--11))

-->s=%s;
-->sys=syslin('c',((1+2*s)*(1+3*s))/(s*(s*s+s+1)));
-->plzr(sys)

Gadgets (1/2): calendarGadgets (1/2): calendar

Among Scilab’s built-in gadgets
is a calendar. The command

calendar()

returns the calendar for the
present month, the command

calendar(y,m)

returns the calendar for the year
and month in case (shown for
June 2013)

-->calendar(2013,6)
ans =

ans(1)

Jun 2013

ans(2)

M Tu W Th F Sat Sun

ans(3)

0. 0. 0. 0. 0. 1. 2.
3. 4. 5. 6. 7. 8. 9.
10. 11. 12. 13. 14. 15. 16.
17. 18. 19. 20. 21. 22. 23.
24. 25. 26. 27. 28. 29. 30.
0. 0. 0. 0. 0. 0. 0.

Gadgets (2/2): puzzleGadgets (2/2): puzzle

Another gadget is a puzzle that
can be found under
Demonstrations\Tcl/Tk\Puzzle

Scilab the spy: Scilab the spy:

historymanagerhistorymanager

Software that we install on our
computers tend to spy on us by
collecting information on what we
do. Have you ever cared to figure
out how much data e.g. Windows’
index.dat has stored about your
computer & surfing behavior?

Scilab spies with (at least) its
history manager. You can access
this data by entering
displayhistory() on the Console.
The file can be cleaned via
Preferences\Clear History

Sorry,
I could not copy-paste an extract because
PowerPoint crashed repeatedly (it happens
to Bill Gates as well… Often.)

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

4. Examples, Set 1 4. Examples, Set 1

Demonstration of basic Scilab Demonstration of basic Scilab
programsprograms

Return to Contents

Example 1Example 1--1: script for a 1: script for a

simple plotsimple plot

�� LetLet’’s elaborate on the s elaborate on the
example from example from ““Scilab in 15 Scilab in 15
minutesminutes””

�� We work with the Editor We work with the Editor
using the same script as using the same script as
before, but with added before, but with added
commentscomments

�� Save the function when it Save the function when it
has been typed in. I call it has been typed in. I call it
plot1.sceplot1.sce and have saved it and have saved it
on my USB thumb drive, on my USB thumb drive,
you can save it wherever you can save it wherever
you likeyou like

�� To run the script, Click on To run the script, Click on
the Editorthe Editor’’s s Execute Execute iconicon

�� What happens is shown on What happens is shown on
the next slidethe next slide

Note: Comments begin with a double
slash (//). Scilab disregards everything
behind the // when it executes the code

// plot1.sce

// A simple 2D plot of a sine function /
// with the abscissa x = 0 ... 10, /
// and amplitude A = increases with x /
// The function itself is y(x) /

x = [0:.1:10]; // The abscissa x is a row vector
A = 0.5*x; // Modulated amplitude, row vector
y = A.*sin(2*x); // Element-by-element multiplication
plot(y) // Plot command

Ex 1Ex 1--1: the Graphics 1: the Graphics

WindowWindow

As seen before,
Scilab uses a
third window,
the Graphics
Window, to
present the plot

Information on
the executed
script is echoed
to the Console.
Error messages
are also
displayed on
the Console These three are the windows that we mainly work

with, but there are more. You have already seen a
few like the Help Browser and Variable Browser

Ex 1Ex 1--1: using the Console1: using the Console

�� The script could also be The script could also be
executed from the Consoleexecuted from the Console

�� After the command prompt, After the command prompt,
typetype

exec plot1.sceexec plot1.sce

�� And the result is an And the result is an error error
messagemessage

�� The reason? The reason? Scilab looks for Scilab looks for
plot1.sce in the wrong placeplot1.sce in the wrong place

�� To see where Scilab was To see where Scilab was
looking, Click: looking, Click: FileFile\\Display Display
current directorycurrent directory

�� The answer is shown in the The answer is shown in the
lower window: It looks in lower window: It looks in
ScilabScilab’’s program file, which s program file, which
is not where I put itis not where I put it

Ex 1Ex 1--1: change directory1: change directory

�� Click on the icon Click on the icon Change Change
current directory...current directory...

�� A new window pops upA new window pops up
�� Define the right file with Define the right file with

the dropthe drop--down menudown menu
�� Click: Click: OpenOpen

�� You can then return to the You can then return to the
Console and type in the Console and type in the
commandcommand

exec plot1.sceexec plot1.sce

�� And it works, as seen on And it works, as seen on
the next slidethe next slide

Note: The command chdir()
allows the directory to be
changed “on the run”

Ex 1Ex 1--1: plot and echo1: plot and echo

Up pops the
Graphics
Window with a
plot of the
defined
function...

while the script
is echoed to the
Command
Window
(Console)

// plot1.sce

// A simple 2D plot of a sine function /
// with the abscissa x = 0 ... 10, /
// and amplitude A = increases with x /
// The function itself is y(x) /

x = [0:.1:10]; // The abscissa x is a row vector
A = 0.5*x; // Modulated amplitude, row vector
y = A.*sin(2*x); // Element-by-element multiplication
plot(y) // Plot command

-->exec('H:\Dr.EW\Writings\Scilab examples\plot1.sce', -1)
y = A*sin(2*x); // Element-by-element multiplication

!--error 10
Inconsistent multiplication.

at line 10 of exec file called by :
exec('H:\Dr.EW\Writings\Scilab examples\plot1.sce', -1)

-->

Ex 1Ex 1--1: comments (1/4), 1: comments (1/4),

command detailscommand details

�� The vector definition The vector definition
xx=[0:0.1:10]=[0:0.1:10] can be can be
interpreted as interpreted as ““from 0 to from 0 to
10 in steps of 0.110 in steps of 0.1””

�� Multiplication by theMultiplication by the Dot Dot
OperatorOperator (.*) is necessary (.*) is necessary
to tell Scilab it should to tell Scilab it should
multiply the vectors multiply the vectors
elementelement--byby--element. element.
Change to ordinary Change to ordinary
multiplication (*) and youmultiplication (*) and you’’ll ll
get this get this error messageerror message on on
the Consolethe Console

Editor contents will from
now on be shown on light
green background

Ex 1Ex 1--1: comments (2/3), 1: comments (2/3),

the plotthe plot

The plot is very basic as it has
no title, axis labels, or grid.
We’ll return to them in the
next example

The abscissa scale may seem
strange, the maximum value
for x was 10 but the scale
goes to 100. The figure 100 is
actually the number of
calculations, since they were
made in steps of 0.1 up to 10.
Try to change t to
x=[0:0.2:10]; and you’ll
see that the scale ends at 50
(the modified script must be
saved before it can be run)

Ex 1Ex 1--1: comments (3/4), 1: comments (3/4),

clfclf

Assume that we make a
change to the script, e.g.
increase the frequency to
sin(5*s), save it, and execute
it immediately after a previous
run

As a result Scilab plots the
new graph on top of the
previous one. To avoid this we
must either

• Close the Graphics Window
manually after each run, or

• Add the function clf (clear
figure) to the script to make
Scilab clean the window

clf;
x = [0:.1:10];
A = 0.5*x;
y = A.*sin(5*x);
plot(y)

// plot1.sce

// A simple 2D plot of a sine function /
// with the abscissa x = 0 ... 10, /
// and amplitude A = increases with x /
// The function itself is y(x) /

clear, clc, clf;
x = [0:.1:10]; // The abscissa x is a row vector
A = 0.5*x; // Modulated amplitude, row vector
y = A.*sin(2*x); // Element-by-element multiplication
plot(y) // Plot command

Ex 1Ex 1--1: comments (4/4), 1: comments (4/4),

cleaning trashcleaning trash
Some programmers prefer to
safeguard against different
forms of old junk that may
interfere with the execution of
the script. To do this, three
commands are added at the
beginning of the script:

• clear, removes items from
the workspace and frees
memory*

• clc, cleans the Console; the
echo signal is mainly erased

• clf, wipes an open Graphics
Window

Thus our final script looks like this. Pay
attention to the semicolon (;) at the end
of each expression apart from the last

*) Careful with clear, it may cause havoc in some cases (there will be a demo on
this later)

Example 1Example 1--2: the task, a 2: the task, a

decaying linear chirpdecaying linear chirp
� Write the script for a linearly frequency modulated sinusoidal

signal s(t), i.e. a linear chirp of the type

s(t) = A(t) · sin {[2π(f0 + k(t)t] + ϕ}

where k is the rate of frequency change, or chirp rate
� Use 2.5 periods of the basic frequency
� The amplitude should decay exponentially, A(t) = 2e-t/3

� The initial phase shift ϕ shall be π/4
� Plot and print the result with a plotting method that differs

from the previous one
� The plot shall have grid, title, and axis labels

Plug in the commands plot(), histplot(), surf(), and plot3d() on
the Console to view examples of Scilab plots. See also Chapter 7.

// f-modulation1.sce /

// Plots a sinusoidal function of the type /
// s = A(t)(sin(wt+x(t)+phi)), where w = angular /
// velocity, x(t) = frequency modulation, phi = /
// phase shift, and A(t) = amplitude /

clear, clc, clf;
f = 1; // Frequency
w = 2*%pi*f;
phi = %pi/4; // Initial phase shift
fin = (4*%pi)/w; // End of plot
t = linspace(0,fin,1000);
A = 2*exp(-t);
s = A.*sin(w*t + 10*t^2 + phi);
plot2d(t,s,5)

Ex 1Ex 1--2: first iteration2: first iteration

�� The The linspacelinspace()() function creates function creates
a linearly space plotting vector a linearly space plotting vector
with the arguments with the arguments fromfrom, , toto, ,
number of pointsnumber of points. The default . The default
value is 100 points, but more are value is 100 points, but more are
needed hereneeded here

�� Here is the Dot Operator (.*) Here is the Dot Operator (.*)
againagain

�� The The plot2d()plot2d() produces the 2D produces the 2D
plot. The arguments plot. The arguments tt and and ss
stands for the x and ystands for the x and y--axes, the axes, the
number number 55 produces a red graphproduces a red graph

Note: fin is used as the end of plot
variable name because end is
reserved (Scilab keyword)

Ex 1Ex 1--2: plot2: plot

The plot looks as
expected—including
the initial phase
shift—but it lacks a
grid, title, and axis
labels

plot2d() is a more
versatile function
than plot(), which
is similar to the plot
function in Matlab

Ex 1Ex 1--2: improved plot2: improved plot

// f-modulation2.sce

// Plots a sinusoidal function of the type /
// s = A(t)(sin(wt+x(t)+phi)), where w = angular /
// velocity, x(t) = frequency modulation, phi = /
// phase shift, and A(t) = amplitude /

clear, clc, clf;
f = 1; // Frequency
w = 2*%pi*f;
phi = %pi/4 // Initial phase shift
fin = (4*%pi)/w; // End of plot
t = linspace(0,fin,1000);
A = 2*exp(-t);
s = A.*sin(w*t + 10*t^2 + phi);
plot2d(t,s,5)

xgrid()
xtitle('SINUSOIDAL PLOT')
xlabel('t')
ylabel('Amplitude')

Here I have
added code
to plot the
grid, xgrid(),
title, xtitle(),
and x and y
labels,
xlabel(),
ylabel().
Crude, but it
works

Ex 1Ex 1--2: 2:

printingprinting
�� ScilabScilab’’s windows (Console, Editor, s windows (Console, Editor,

Graphics Window) all have both Graphics Window) all have both
normal and advanced print functionsnormal and advanced print functions

�� One way of getting a coherent One way of getting a coherent
printable document is to copy the printable document is to copy the
contents of the windows and paste contents of the windows and paste
them into a word processing page them into a word processing page
(Scilab supports (Scilab supports LaTeXLaTeX))

�� The image shown here was done on The image shown here was done on
MS Word (MS Word (OOoOOo Writer did not Writer did not
recognize Scilabrecognize Scilab’’s file type). It was s file type). It was
then printed as .PDF, saved as a then printed as .PDF, saved as a
.PNG file, and finally cropped with .PNG file, and finally cropped with
MS Picture ManagerMS Picture Manager

�� ThatThat’’s a tedious method. Consult s a tedious method. Consult
HelpHelp for advanced print featuresfor advanced print features

// f-modulation3.sce /

// Plots a sinusoidal function of the type /
// s = A(t)(sin(wt+x(t)+phi)), where w = angular /
// velocity, x(t) = frequency modulation, phi = /
// phase shift, and A(t) = amplitude. Second /
// plot for momentary frequency values /

clear, clc, clf;
f = 1; // Frequency
w = 2*%pi*f;
phi = %pi/4; // Initial phase shift
fin = (4*%pi)/w; // End of plot
t = linspace(0,fin,1000);
A = 2*exp(-t);
s = A.*sin(w*t + 10*t^2 + phi);
f_mom = f + 10*t; // Momentary frequency
plot(t,s,'r',t,f_mom,'b')
xgrid()
xtitle('SINUSOIDAL PLOT','t')
legend('s','f_mom',2)

Ex 1Ex 1--2: checking2: checking

�� To show that the frequency is To show that the frequency is
linearly modulated, we can linearly modulated, we can
add frequency as a function add frequency as a function
of t to the plotof t to the plot

�� For that we add the function For that we add the function
f_momf_mom to the scriptto the script

�� The plot command must also The plot command must also
be modified. Webe modified. We
–– shift back to the shift back to the plot()plot()

command and include both command and include both
parameters, together with parameters, together with
color information (color information (‘‘rr’’, , ‘‘bb’’))

–– fuse xfuse x--label label ‘‘tt’’ as an as an
argument of argument of xtitlextitle()()

–– swap yswap y--label for label for legend()legend();;
the argument 2 refers to the the argument 2 refers to the
upper left hand cornerupper left hand corner

Ex 1Ex 1--2: final plot2: final plot

OK, not an optimal
plot but the
information is
there.

With the big
differences in
vertical scales, we
should either use
logarithmic y axis
or separate the
two into subplots—
but that comes
later

Pay attention
to the legend

Ex 1Ex 1--2: discussion2: discussion

�� As was said earlier, Scilab evolves with time and approaches As was said earlier, Scilab evolves with time and approaches
MatlabMatlab with each releasewith each release

�� As an example in case, ScilabAs an example in case, Scilab’’s s Help BrowserHelp Browser recognizes the recognizes the
xlabelxlabel()() and and ylabelylabel()() that I used in the improved plot as that I used in the improved plot as
MatlabMatlab functionsfunctions and also refers to them as Scilab functionsand also refers to them as Scilab functions

�� However, there are plenty of However, there are plenty of obsolete Scilab functionsobsolete Scilab functions and and
you find them all over if you rely on old tutorials. Even Scilabyou find them all over if you rely on old tutorials. Even Scilab’’s s
Help BrowserHelp Browser may refer to themmay refer to them

�� Be careful, particularly if a function name begins with Be careful, particularly if a function name begins with xx-- ((cf. cf.
note in Chapter 7note in Chapter 7))

�� You may have noticed that I begin the script with You may have noticed that I begin the script with a comment a comment
stating the name of the scriptstating the name of the script (e.g. (e.g. // f// f--modulation3.scemodulation3.sce //). I). I
do this to help identify the script when I am looking at a do this to help identify the script when I am looking at a
printout printout

Example 1Example 1--3: Lotto, the 3: Lotto, the

tasktask

The first part of this example is
borrowed from Mäkelä’s tutorial

Task 1: Create a user defined
function (UDF) that draws a row
of Lotto numbers. Assume that
the Lotto row contains 7
numbers, 1-39

Task 2: Write a script that calls
the previous function (or a
modification of it, if necessary)
and produces a plot of it to
visually indicate if the function
produces random numbers.
Generate 10,000 draws for the
task

function lotto

//---/
// The function draws 7 Lotto numbers [1,39] by first /
// creating a seed using current date and time /
// (second, millisecond) information /
//--/

dt=getdate(); // Pick current date
rand('seed',1000*dt(9)+dt(10)); // Initialize random generator
numbers=floor(1+39*rand(1,7)); // Draw Lotto row
while(length(unique(numbers))<7) // If number repeats in row,

numbers=floor(1+39*rand(1,7)); // then drawn a new row
end
numbers=gsort(numbers); // Sort numbers in decreasing order
disp(numbers(7:-1:1)); // Display in increasing order
endfunction

Ex 1Ex 1--3: task 1, script3: task 1, script

�� dtdt==getdategetdate()() returns returns
dddd--mmmm--yyyyyyyy

�� rand(rand(‘‘seedseed’’,n,n)) sets sets
the random genethe random gene--
ratorrator seed to nseed to n

�� dt(9)dt(9) returns a returns a
number between 00 number between 00
and 59, and 59, dt(10)dt(10)
returns milliseconds returns milliseconds
000000……999999

�� The The while...endwhile...end
construct will be construct will be
covered under the covered under the
discussion belowdiscussion below

Why the hassle with the seed? Without it Scilab generates the same sequence for
each session. The 1000*t(9)+ dt(10) argument improves randomness.

Function ID, not a comment

Ex 1Ex 1--3: task 1, saving3: task 1, saving

This script This script
(function) differs a (function) differs a
bit from the earlier bit from the earlier
ones, so letones, so let’’s go s go
through the save through the save
operation:operation:

Save the script as Save the script as
lotto.scilotto.sci in your in your
preferred filepreferred file

Next, Click on the Next, Click on the
ExecuteExecute icon of icon of
the Editor to the Editor to loadload
the saved file into the saved file into
ScilabScilab

Continues on next
slide…

Ex 1Ex 1--3: task 1, running3: task 1, running

Execute (run) the Execute (run) the
loaded function by loaded function by
entering the function entering the function
name on the Consolename on the Console

 -->exec('H:\Dr.EW\Writings\Scilab examples\lotto.sci', -1)
 Warning : redefining function: lotto

. Use funcprot(0) to avoid this message

-->

 -->exec('H:\Dr.EW\Writings\Scilab examples\lotto.sci', -1)
 Warning : redefining function: lotto

. Use funcprot(0) to avoid this message

 -->help funcprot

 -->lotto

 3. 5. 13. 15. 33. 37. 39.

And the winning And the winning
numbers are...numbers are...

If the Console shows a If the Console shows a
warningwarning, check with , check with HelpHelp
what it means. It can be what it means. It can be
ignored or the ignored or the funcprot(0)funcprot(0)
command can be added to command can be added to
the script to avoid the the script to avoid the
warning. You can also jump warning. You can also jump
to to Chapter 18 Chapter 18 for a brief for a brief
explanationexplanation

Ex 1Ex 1--3: task 1, discussion3: task 1, discussion

�� This is already an intermediate level This is already an intermediate level
programming exercise. Donprogramming exercise. Don’’t worry if t worry if
it gives you problems. Most of its it gives you problems. Most of its
details will be repeated laterdetails will be repeated later

�� The flowchart of the The flowchart of the while...endwhile...end
construct is shown to the right. Pay construct is shown to the right. Pay
attention to the elegant solution for attention to the elegant solution for
testing uniqueness of the numbers:testing uniqueness of the numbers:

length(unique(numberslength(unique(numbers)) < 7)) < 7

However, in theory it could become However, in theory it could become
an almost infinite loopan almost infinite loop……

�� WeWe’’ll return to ll return to while ... endwhile ... end loops in loops in
Chapter 11Chapter 11

Draw new row

Draw Lotto row

All numbers
unique?

Sort numbers

N

Y

Ex 1Ex 1--3: task 2, script 3: task 2, script

(1/2)(1/2)

The previous UDF must The previous UDF must
be modified if it is be modified if it is
called by a separate called by a separate
code: 1) Delete sorting code: 1) Delete sorting
and display and 2) and display and 2)
redefine the function redefine the function
ID to allow callingID to allow calling

In the latter case it has In the latter case it has
one or more one or more input input
argumentsarguments (in) that are (in) that are
given to it by the given to it by the
calling command and calling command and
output argumentsoutput arguments [out] [out]
by which it returns the by which it returns the
result of its calculations result of its calculations
to the calling command to the calling command
(see next slide)(see next slide)

// lotto2.sce

//---/
// The script asks for the number of Lotto draws that we /
// wish to do, using a separate dialog box. It then calls /
// the local UDF lottodraw()) that generates a row of N /
// random Lotto numbers in the range [1,39]. It sorts the /
// numbers into a vector by adding one (1) to the relevant /
// vector element for each corresponding hit. The result /
// is plotted after the entered number of draws. /
//---/

clear,clc,clf;

// (SUBROUTINE) function lottodraw():
//---

// The function draws N Lotto numbers [1,39], with /
// N being defined through the input argument in. /
// It delivers the drawn row to the calling script /
// command through the output argument out. The /
// randomness of the drawn numbers is improved by /
// first creating a seed using current date and /
// time (second, millisecond) information. /

Ex 1Ex 1--3: task 2, script 3: task 2, script

(2/2)(2/2)

Redefined function Redefined function
(subroutine)(subroutine)

The number of Lotto The number of Lotto
draws that we are draws that we are
looking for is entered looking for is entered
via a separate dialog via a separate dialog
box box x_dialogx_dialog()()

The drawn Lotto The drawn Lotto
numbers are collected numbers are collected
in the in the columnscolumns vector vector
inside the inside the for ... endfor ... end
looploop

The result is plotted as The result is plotted as
step functionsstep functions

function out=lottodraw(in)
dt=getdate(); // Pick current date
rand('seed',1000*dt(9)+dt(10)); // Initialize random generator
out = floor(1+39*rand(1,in)); // Draw Lotto row (out variable)
while(length(unique(out))<in) // If number repeats in row,

out = floor(1+39*rand(1,in)); // then a new row is drawn
end

endfunction

// (MAIN) Call subroutine, update histogram, plot:
//---
M = evstr(x_dialog('Enter # of... // Open dialog box
lotto draws ',''));
N = 7; // Lotto numbers to draw
columns = zeros(1,39); // Initiate collecting vector
for k = 1:M

numbers = lottodraw(N); // Call to subroutine
columns(numbers)=columns(numbers)+1;

// Add 1 for drawn number
end

x = linspace(1,39,39); // Define x axis
plot2d2(x,columns,style=2) // Plot as step functions
xtitle('RESULT OF LOTTO DRAWS') // Add title & labels
xlabel('Lotto numbers [1,39]')
ylabel('Hits')

Ex 1Ex 1--3: task 2, execution 3: task 2, execution

& plot& plot

The result is plotted on
the Graphics Window. It
is not too bad,
considering that the
average of 10,000 draws
is 7x10,000/39 = 1,795

The dialog box pops up when
executing the script. Enter the wanted
number of Lotto draws and Click OK

It takes my 1.6 GHz dual
core processor about 10
seconds to compute
10,000 draws

Ex 1Ex 1--3: comments (1/3)3: comments (1/3)

�� This was not exactly an engineering problem, but it showed This was not exactly an engineering problem, but it showed
many features of Scilabmany features of Scilab

�� The UDF in Task 1 is unusual in being closed, having no input The UDF in Task 1 is unusual in being closed, having no input
or output argumentsor output arguments——you just use it as it is. The local UDF you just use it as it is. The local UDF
demonstrated in Task 2 is the normal casedemonstrated in Task 2 is the normal case

�� In addition to In addition to rand()rand(), Task 1 brings in several useful , Task 1 brings in several useful
functions: functions: getdategetdate()(), , floor()floor(),, unique()unique(), and, and gsortgsort()()

�� The script in Task 2 is commented at length. Adding headings The script in Task 2 is commented at length. Adding headings
and comments takes time and they require space, but and comments takes time and they require space, but
comments arecomments are absolutely necessaryabsolutely necessary to understand the to understand the
program at a later dateprogram at a later date

�� Task 2 introduces the dialog box, a GUI (graphical user Task 2 introduces the dialog box, a GUI (graphical user
interface) feature to which we shall return in interface) feature to which we shall return in Chapter 15 Chapter 15

Ex 1Ex 1--3: comments (2/3)3: comments (2/3)

�� In addition to the In addition to the plot()plot() and and plot2d()plot2d() commands that we commands that we
used, Scilab has numerous other ways of creating plots, used, Scilab has numerous other ways of creating plots,
together with options for adding clarifying together with options for adding clarifying text stringstext strings to the to the
plots. Plotting will be covered in more detail in plots. Plotting will be covered in more detail in Chapter 7Chapter 7

�� Flow controlFlow control——in this case the term refers to the use of in this case the term refers to the use of
conditional branch structuresconditional branch structures——will be discussed in will be discussed in Chapter 11Chapter 11

�� Examples 1Examples 1--1 1 …… 11--3 were also intended to stress the fact that 3 were also intended to stress the fact that
we are forced to we are forced to ““think matrixthink matrix--wisewise”” when working with when working with
Scilab. For instance, Scilab immediately generates an error Scilab. For instance, Scilab immediately generates an error
message if we attempt to do ordinary multiplication (*) when message if we attempt to do ordinary multiplication (*) when
a parameter is in matrix form and requires Dot multiplication a parameter is in matrix form and requires Dot multiplication
(.*) (Recall Example 1(.*) (Recall Example 1--1?)1?)

Ex 1Ex 1--3: comments (3/3), 3: comments (3/3),

rounding functionsrounding functions

-->round(-2.7), round(2.7)
ans =

- 3.
ans =

3.

-->fix(-2.7), fix(2.7)
ans =

- 2.
ans =

2.

-->floor(-2.7), floor(2.7)
ans =

- 3.
ans =

2.

-->ceil(-2.7), ceil(2.7)
ans =

- 2.
ans =

3.

The rounding function floor() is one
of four rounding functions in Scilab:
round(), fix() (or int()), floor(), and
ceil()

Pay attention to the difference
between the first and the two last
ones

rounds upceil()

rounds downfloor()

returns integer part
fix() or
int()

rounds to nearest integerround()

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

5. Matrices, functions & 5. Matrices, functions &

operatorsoperators

An overview of basic matrix An overview of basic matrix
operations, functions, and operations, functions, and
operatorsoperators

Return to Contents

IntroductionIntroduction

�� As Scilab is built around matrices we are forced to use themAs Scilab is built around matrices we are forced to use them
�� Scilab stores numbers (and characters) in matricesScilab stores numbers (and characters) in matrices
�� A matrix can be seen as a table, consisting of A matrix can be seen as a table, consisting of mm rows and rows and nn columns columns

((mmxxnn matrices, also denoted matrices, also denoted ixjixj matrices)matrices)
�� Scalar variablesScalar variables do not exist do not exist per seper se, they are treated as 1x1 matrices, they are treated as 1x1 matrices
�� The general form of a Scilab matrix (here 3x3 matrix) isThe general form of a Scilab matrix (here 3x3 matrix) is

A = [11 12 13; 21 22 23; 31 32 33]A = [11 12 13; 21 22 23; 31 32 33]

Row elements can also be separated by Row elements can also be separated by commascommas::

A = [11, 12, 13; 21, 22, 23; 31, 32, 33]A = [11, 12, 13; 21, 22, 23; 31, 32, 33]

In both cases In both cases semicolonssemicolons separate rowsseparate rows
�� The next page shows both alternatives for the 3x3 matrixThe next page shows both alternatives for the 3x3 matrix

“[The vector] has never been of the slightest use to any creature.”
Attributed to Lord Kelvin

The 3x3 matrixThe 3x3 matrix

Both alternatives for expressing
matrices are interpreted in the
same way by Scilab. Pick
whichever you like

 -->A = [11 12 13; 21 22 23; 31 32 33]
 A =

 11. 12. 13.
 21. 22. 23.
 31. 32. 33.

 -->A = [11, 12, 13; 21, 22, 23; 31, 32, 33]
 A =

 11. 12. 13.
 21. 22. 23.
 31. 32. 33.

Note:Scilab may cause a copied screen
text (as seen here) to be underlined
when pasted to another document. If
so, put the cursor at the end of the text
and press Backspace ()

Row and column vectorsRow and column vectors

Task 1: Create a row vector with
first element 0, last element 1 and
increment (step size) 0.2. Note the
order and colons that divide
elements

Task 2: Create a similar column
vector. Note the asterisk that
signifies the matrix transpose

In case the Console window is set
too small and all elements do not
fit in, Scilab interrupts plotting and
asks if it should continue

-->column=[0:0.2:1]'
column =

0.
0.2
0.4
0.6
0.8
1.

 -->row=[0:0.2:1]
 row =

 0. 0.2 0.4 0.6 0.8 1.

Some special matricesSome special matrices

 -->C=eye(3,3)
 C =

 1. 0. 0.
 0. 1. 0.
 0. 0. 1.

 -->D=ones(3,2)
 D =

 1. 1.
 1. 1.
 1. 1.

 -->E=zeros(2,3)
 E =

 0. 0. 0.
 0. 0. 0.

3x3 identity
matrix

3x2 matrix
of ones

2x3 zero
matrix

-->rand(4,4)
ans =

0.2312237 0.3076091 0.3616361 0.3321719
0.2164633 0.9329616 0.2922267 0.5935095
0.8833888 0.2146008 0.5664249 0.5015342
0.6525135 0.312642 0.4826472 0.4368588

-->rand(4,4,'normal')
ans =

- 1.3772844 - 0.6019869 - 0.3888655 - 0.7004486
0.7915156 - 0.0239455 - 0.6594738 0.3353388

- 0.1728369 - 1.5619521 0.6543045 - 0.8262233
0.7629083 - 0.5637165 - 0.6773066 0.4694334

The function rand(m,n) creates a
uniformly distributed mxn matrix.
Adding the argument ‘normal’
creates a normal distributed matrix

Matrices are defined with square brackets, [], while parentheses, (), are
used to cluster function arguments

Basic matrix calculationsBasic matrix calculations

 -->A = [1 2 3; 4 5 6]; B = A; C = A + B
 C =

 2. 4. 6.
 8. 10. 12.

 -->A = [1 2 3; 4 5 6]; B = A'; C = A * B
 C =

 14. 32.
 32. 77.

Addition Multiplication (note transpose!)

Division (note rounding errors)

 -->A = [2 3; 4 5]; H = inv(A)
 H =

 - 2.5 1.5
 2. - 1.

Inverse matrix

Note 1: Rules for matrix operations must of course be observed!
Note 2: Scilab returns D, not e, for the exponent (1.518D-16); the exact
value is 0 but here we have a case of limited computing accuracy

-->A=[1 2 3; 4 5 6]; B=[A]; C=A/B
C =

1. 1.518D-16
3.795D-15 1.

DDüürerrer’’ss magic squaremagic square

�� German Renaissance artist and German Renaissance artist and
amateur amateur matematicianmatematician Albrecht Albrecht
DDüürerrer’’ss ““magicmagic”” square is a square is a
popular example in linear algebrapopular example in linear algebra

�� In the window of In the window of DDüürerrer’’ss
engraving the sum of any row, engraving the sum of any row,
column, or diagonal yield the column, or diagonal yield the
same result (34)same result (34)

�� We shall use the magic square to We shall use the magic square to
investigate some aspects of investigate some aspects of
matrix operationsmatrix operations

�� The magic square will be The magic square will be
denoted denoted ““MM”” to set it apart from to set it apart from
other matricesother matrices

�� Note that Note that many matrix operations many matrix operations
are defined only for square are defined only for square
matricesmatrices

-->M = [16 3 2 13; 5 10 11 8
-->9 6 7 12; 4 15 14 1]
M =

16. 3. 2. 13.
5. 10. 11. 8.
9. 6. 7. 12.
4. 15. 14. 1.

-->sum(M)
ans =

136.

sum(), transpose, and sum(), transpose, and

diagdiag()()
�� The magic square is entered in The magic square is entered in

the Consolethe Console’’s command lines command line

�� The statement The statement sum(Msum(M))
produces the sum of all produces the sum of all
elements. This elements. This differs from differs from
MatlabMatlab, where the same , where the same
statement returns the sum of statement returns the sum of
the four columns, i.e., the four columns, i.e.,

sum(Msum(M) = 34. 34. 34. 34.) = 34. 34. 34. 34.

�� The transpose statement The transpose statement MM’’
flips the matrix about its main flips the matrix about its main
diagonaldiagonal

�� The statement The statement diag(Mdiag(M)) , ,
finally, returns the main finally, returns the main
diagonal as a column vector diagonal as a column vector

-->M‘
ans =

16. 5. 9. 4.
3. 10. 6. 15.
2. 11. 7. 14.
13. 8. 12. 1.

-->diag(M)
ans =

16.
10.

7.
1.

Sum of rows and Sum of rows and

columns: sum()columns: sum()

 -->A = [1 2 3; 4 5 6; 7 8 9]
 A =

 1. 2. 3.
 4. 5. 6.
 7. 8. 9.

 -->B = sum(A,'r')
 B =

 12. 15. 18.

 -->C = sum(A,'c')
 C =

 6.
 15.
 24.

�� Scilab returns the sums of rows and Scilab returns the sums of rows and
columns of a matrix A with the columns of a matrix A with the
commands commands sum(A,sum(A,’’cc’’)) and and
sum(A,sum(A,’’rr’’)) respectivelyrespectively

�� At first sight the use of At first sight the use of ‘‘ cc’’ and and
‘‘ rr’’ arguments feels odd. The logic arguments feels odd. The logic
is that is that ‘‘ rr’’ returns the sums of returns the sums of
matrix columns giving a matrix columns giving a row vectorrow vector, ,
while while ‘‘ cc’’ returns the sums of returns the sums of
matrix rows, a matrix rows, a column vectorcolumn vector

�� Alternative statements are: Alternative statements are:
sum(A,sum(A,’’rr’’)) = = sum(A,1)sum(A,1) and and
sum(A,sum(A,’’cc’’)) = = sum(A,2)sum(A,2)

prod()prod()

�� The product of rows and columns The product of rows and columns
can be formed in a similar way as can be formed in a similar way as
sumssums

�� prod(Aprod(A, , ‘‘rr’’)) returns the product returns the product
of each column as a row vectorof each column as a row vector

�� prod(Aprod(A, , ‘‘cc’’)) returns the product returns the product
of each row as a column vectorof each row as a column vector

�� prod(Aprod(A)) returns the product of returns the product of
all matrix elementsall matrix elements

-->A=[1 2 3; 4 5 6; 7 8 9]
A =

1. 2. 3.
4. 5. 6.
7. 8. 9.

-->prod(A, 'r')
ans =

28. 80. 162.

-->prod(A, 'c')
ans =

6.
120.
504.

-->prod(A)
ans =

362880.

min(), max()min(), max()

�� The same logic continues with the The same logic continues with the
min()min() and and max()max() functionsfunctions

�� min(Amin(A)) picks out the smallest picks out the smallest
element in the matrix andelement in the matrix and
max(Amax(A)) the biggestthe biggest

�� min(Amin(A, , ‘‘rr’’)) returns a row vector returns a row vector
consisting of the smallest consisting of the smallest
elements in each columnelements in each column

�� max(Amax(A, , ‘‘cc’’)) returns a column returns a column
vector containing the biggest vector containing the biggest
elements in each rowelements in each row

-->A=[3 0 1; 2 2 7; 5 9 4]
A =

3. 0. 1.
2. 2. 7.
5. 9. 4.

-->min(A)
ans =

0.

-->max(A)
ans =

9.

-->min(A, 'r')
ans =

2. 0. 1.

-->max(A, 'c')
ans =

3.
7.
9.

 -->A = [5 3 1; 2 4 6];

 -->[min_val min_pos] = min(A)
 min_pos =

 1. 3.
 min_val =

 1.

 -->[max_val max_pos] = max(A)
 max_pos =

 2. 3.
 max_val =

 6.

Min/max position & valueMin/max position & value

�� A variation of the A variation of the min()min() and and max()max()
functions allow us to determine the functions allow us to determine the
position and value of the smallest alt. position and value of the smallest alt.
largest matrix elementlargest matrix element

�� [[min_valuemin_value min_posmin_pos] =] = min(Amin(A))
picks out the position and value picks out the position and value
((in this order!in this order!) of the smallest) of the smallest
element in the matrix, element in the matrix, [[max_valmax_val
max_posmax_pos] =] = max(Amax(A)) the largestthe largest

�� Note 1:Note 1: The designation of vector The designation of vector
elements (here elements (here min_valmin_val etc.) is etc.) is
irrelevantirrelevant

�� Note 2:Note 2: If the matrix contains If the matrix contains
multiple min/max values only the multiple min/max values only the
position of the first is returnedposition of the first is returned

mean()mean()

�� And the previously mentioned logic And the previously mentioned logic
a final time with the a final time with the mean()mean()
functionfunction

�� mean(Amean(A)) returns the mean returns the mean
value of all matrix elementsvalue of all matrix elements

�� mean(Amean(A, , ‘‘rr’’)) returns a row returns a row
vector consisting of the mean vector consisting of the mean
of each columnof each column

�� mean(Amean(A, , ‘‘cc’’)) returns a column returns a column
vector containing the mean of vector containing the mean of
each roweach row

 -->A=[1 2 3; 4 5 6]
 A =

 1. 2. 3.
 4. 5. 6.

 -->mean(A)
 ans =

 3.5

 -->mean(A, 'r')
 ans =

 2.5 3.5 4.5

 -->mean(A, 'c')
 ans =

 2.
 5.

size()size()

�� The function The function size()size() can be can be
used to find out the size of a used to find out the size of a
matrixmatrix

�� The answer is given as the The answer is given as the
number of rows and columns number of rows and columns
(in that order)(in that order)

�� When row and column When row and column
variables are named, the variables are named, the
answer is given in alphabetic answer is given in alphabetic
order (here columns first)order (here columns first)

�� Matrices with string elements Matrices with string elements
(strings were used in the dialog (strings were used in the dialog
box in Ex 1box in Ex 1--3 and will be 3 and will be
discussed in detail later) are discussed in detail later) are
treated the same waytreated the same way

 -->v1 = [1 2 3 4];

 -->v2 = v1';

 -->size(v1)
 ans =

 1. 4.

 -->size(v2)
 ans =

 4. 1.
 -->[n,m] = size([1 2 3; 4 5 6])

 m =

 3.
 n =

 2.

 -->A = [1 2 3 4; 5 6 7 8];

 -->size(A)
 ans =

 2. 4.

 -->size(['You' 'Me'; 'Alpha' 'Beta'; 'Two' 'Three'])
 ans =

 3. 2.

length()length()

�� The function The function length()length() is is
related to related to size()size(). For a matrix . For a matrix
with numeric elements with numeric elements
length()length() returns the number returns the number
of elementsof elements

�� For a matrix with string For a matrix with string
elements elements length()length() returns the returns the
number of characters in each number of characters in each
element element

�� Note that matrices with mixed Note that matrices with mixed
numeric and string elements numeric and string elements
are are not allowednot allowed

 -->length(['Hello world' 'SCILAB'; 'Alpha' 'Beta'])
 ans =

 11. 6.
 5. 4.

 -->length([1.23; 456,7890; 9])
 ans =

 3.

find(conditionfind(condition))

�� The function The function find()find() identifies and identifies and
returns the row locations of those returns the row locations of those
matrix elements that satisfy the matrix elements that satisfy the
Boolean condition stated in the Boolean condition stated in the
argument argument

�� An empty matrix ([]) is returned in An empty matrix ([]) is returned in
case no element satisfies the given case no element satisfies the given
condition condition

�� The statement The statement X=3 X=3 is not a valid is not a valid
Boolean condition. Although a Boolean condition. Although a
numeric answer is returned, it is numeric answer is returned, it is
not legitimate not legitimate

�� Later we shall se that Later we shall se that find()find() can can
also be used with stringsalso be used with strings

-->X = [9 1 8; 2 7 3; 6 3 5];

-->find(X<5)
ans =

2. 4. 6. 8.

-->find(X==3)
ans =

6. 8.

-->find(X=3)
ans =

1.

-->find(X~=3)
ans =

1. 2. 3. 4. 5. 7. 9.

-->matr = [-1 4 -2 2; 1 0 -3 3; -4 5 0 -5]
matr =

- 1. 4. - 2. 2.
1. 0. - 3. 3.

- 4. 5. 0. - 5.

-->s_matr = gsort(matr)
s_matr =

5. 2. 0. - 3.
4. 1. - 1. - 4.
3. 0. - 2. - 5.

gsortgsort()()

�� Scilab does not recognize Scilab does not recognize MatlabMatlab’’ss
sort()sort() function (it used to before function (it used to before
version 5.3). Instead we must use version 5.3). Instead we must use
gsortgsort()(), which is different but , which is different but
serves the same purpose serves the same purpose

�� As shown to the right,As shown to the right, gsortgsort()()
picks out matrix elements in picks out matrix elements in
decreasing order and returns them decreasing order and returns them
column by column column by column

�� We achieve We achieve MatlabMatlab--like sorting by like sorting by
adding the arguments adding the arguments ‘‘rr’’ (row) and (row) and
‘‘ii’’ (increase) to(increase) to gsortgsort()()

�� Check with Check with Help Help for details on for details on
arguments arguments

-->matr = [-1 4 -2 2; 1 0 -3 3; -4 5 0 -5];

-->Mtlb_sort = gsort(matr, 'r', 'i')
Mtlb_sort =

 - 4. 0. - 3. -5.
 - 1. 4. - 2. 2.
 1. 5. 0. 3.

testmatrixtestmatrix()()

-->testmatrix('magi',4)
ans =

16. 2. 3. 13.
5. 11. 10. 8.
9. 7. 6. 12.
4. 14. 15. 1.

-->testmatrix('magi',5)
ans =

17. 24. 1. 8. 15.
23. 5. 7. 14. 16.
4. 6. 13. 20. 22.

10. 12. 19. 21. 3.
11. 18. 25. 2. 9.

�� Magic squares of different sizes can Magic squares of different sizes can
be produced with the be produced with the
testmatrix(testmatrix(‘‘magimagi’’,n,n)) function. It is function. It is
the same as the the same as the magic(nmagic(n)) function in function in
MatlabMatlab

�� Additional matrices that can be Additional matrices that can be
produced by the produced by the testmatrixtestmatrix()()
function is function is testmatrix(testmatrix(‘‘frkfrk’’,n,n))
which returns the Franck matrix, and which returns the Franck matrix, and
testmatrix(testmatrix(‘‘hilbhilb’’,n,n)) that is the that is the
inverse of the inverse of the nxnnxn Hilbert matrix. Hilbert matrix.
Check with Check with HelpHelp for details for details

det(Mdet(M) & rounding errors) & rounding errors

�� Practical problems often require the Practical problems often require the
determinant of a (square) matrix to be determinant of a (square) matrix to be
calculatedcalculated

�� The command The command detdet ()() returns the returns the
determinantdeterminant

�� The determinant of The determinant of DDüürerrer’’ss magic magic
square is zero (the matrix is square is zero (the matrix is singularsingular),),
but as shown, the rounding error but as shown, the rounding error
prevents Scilab from returning the prevents Scilab from returning the
exact answer (recall that we exact answer (recall that we
encountered this problem encountered this problem beforebefore))

�� To get rid of the rounding error we To get rid of the rounding error we
can use the can use the clean()clean() function. It function. It
returns zero for values below 1ereturns zero for values below 1e--1010

 -->M = testmatrix('magi',4)
 M =

 16. 2. 3. 13.
 5. 11. 10. 8.
 9. 7. 6. 12.
 4. 14. 15. 1.

 -->det(M)
 ans =

 - 1.450D-12

 -->clean(det(M))
 ans =

 0.

Deleting rows and Deleting rows and

columnscolumns

� Rows and columns can be deleted by
using a pair of square brackets

� We start with the 4x4 magic square,
denoted “m” because we shall distort it

� We first delete the third column. The
Colon Operator argument is used to
retain all rows, the argument 3 points to
the third column. The result is a 3x4
matrix

� In the second instance we delete the
second row, to end with a 3x3 matrix

-->m = [16 3 2 13; 5 10 11 8
--> 9 6 7 12; 4 15 14 1]
m =

16. 3. 2. 13.
5. 10. 11. 8.
9. 6. 7. 12.
4. 15. 14. 1.

-->m(:,3) = []
m =

16. 3. 13.
5. 10. 8.
9. 6. 12.
4. 15. 1.

-->m(2,:) = []
m =

16. 3. 13.
9. 6. 12.
4. 15. 1.

delete

delete

Changing rows and Changing rows and

columnscolumns

� The logic on the previous slide can be
used to changing rows and columns

� We start from the previous 3x3 matrix

� First change elements in the second row
to zeros

� Then we change the last column to ones
(note transpose)

� These operations can also be seen as
inserting a defined row/column vector in
place of an existing row or column

m =
16. 3. 13.

9. 6. 12.
4. 15. 1.

-->m(2,:)=[0 0 0]
m =

16. 3. 13.
0. 0. 0.
4. 15. 1.

-->m(:,3)=[1 1 1]'
m =

16. 3. 1.
0. 0. 1.
4. 15. 1.

Addressing matrix elements Addressing matrix elements

by linear indexingby linear indexing

� Scilab regards matrices as column
vectors. This allows us to address matrix
elements in a simplified way

� We start from the 4x4 magic square

� Then we pick out the element (2,4),
which is number 14 if you count along
the columns

� Next pick out elements of the main
diagonal

� Finally, change the
elements of the
second diagonal
to zeros

 -->M=testmatrix('magi',4)
 M =

 16. 2. 3. 13.
 5. 11. 10. 8.

9. 7. 6. 12.
 4. 14. 15. 1.

-->M(14)
 ans =

 8.

 -->M([4 7 10 13]) = [0 0 0 0]
 M =

 16. 2. 3. 0.
 5. 11. 0. 8.
 9. 0. 6. 12.
 0. 14. 15. 1.

 -->M([1 6 11 16])
 ans =

 16.
 11.
 6.
 1.

Concatenation (1/2)Concatenation (1/2)

�� Concatenation is the process of joining Concatenation is the process of joining
small matrices to make bigger onessmall matrices to make bigger ones

�� In fact, even the simplest matrix is In fact, even the simplest matrix is
formed by concatenating its individual formed by concatenating its individual
elementselements

�� The pair of square brackets, [], is the The pair of square brackets, [], is the
concatenation operatorconcatenation operator

�� The examples illustrate two basic The examples illustrate two basic
cases of concatenation (the only cases of concatenation (the only
difference are the transposed matrices difference are the transposed matrices
in the second case)in the second case)

�� Note that if a semicolon (;) is placed Note that if a semicolon (;) is placed
after a command the result is after a command the result is
suppressed, but with a comma (,) it is suppressed, but with a comma (,) it is
displayed (top case)displayed (top case)

 -->A = [1 2 3]'; B = [4 5 6]'; C = [A,B]
 C =

 1. 4.
 2. 5.
 3. 6.

 -->A = [1 2 3]; B = [4 5 6], C = [A,B]
 B =

 4. 5. 6.
 C =

 1. 2. 3. 4. 5. 6.

Concatenation (2/2)Concatenation (2/2)

� In this example a 4x4 matrix has
been created by concatenating four
2x2 matrices

� Lines have been overlaid to highlight
the fused parts

� Alternatively, we could have
concatenated four row or column
vectors, a 3x3 matrix plus a row and
column vector, etc.

� E can be treated as a normal 4x4
matrix. For instance, the command A
= E(2:3, 2:3) picks out the submatrix

22 23
32 33

-->A = [11 12; 21 22];

-->B = [13 14; 23 24];

-->C = [31 32; 41 42];

-->D = [33 34; 43 44];

-->E = [A B; C D]

E =

11. 12. 13. 14.
21. 22. 23. 24.

31. 32. 33. 34.
41. 42. 43. 44.˥

˩

˥
˩

Operators (1/4): Operators (1/4):

the Colon Operator (:)the Colon Operator (:)
�� The Colon Operator, (:), The Colon Operator, (:),

emerged in the earlier examplesemerged in the earlier examples
�� It is one of the most important It is one of the most important

operators in Scilaboperators in Scilab
�� A typically use is in the form:A typically use is in the form:

0:%pi/36:%pi0:%pi/36:%pi

Meaning: Meaning: ““Starting at 0, step by Starting at 0, step by
π/36 up to /36 up to π””

�� The first example shows that The first example shows that
the truncated form 1:8 the truncated form 1:8
produces a row vector with produces a row vector with
increment 1. The second shows increment 1. The second shows
how to refer to rows 3how to refer to rows 3--4, 4,
column 2, of the magic square column 2, of the magic square

 -->1:8
 ans =

 1. 2. 3. 4. 5. 6. 7. 8.

 -->M = testmatrix('magi',4)
 M =

 16. 2. 3. 13.
 5. 11. 10. 8.
 9. 7. 6. 12.
 4. 14. 15. 1.

 -->K = M(3:4,2)
 K =

 7.
 14.

Operators (2/4): Operators (2/4):

more examples with (:)more examples with (:)

�� The second example on the previous slide was a case of The second example on the previous slide was a case of subscriptsubscript
manipulation of the type manipulation of the type M(i:j,kM(i:j,k)),, where where i:ji:j refers to the refers to the i:thi:th to to j:thj:th
rows and rows and kk to the to the k:thk:th columncolumn

�� There is often need to address part of a matrix. The idea shouldThere is often need to address part of a matrix. The idea should be be
understood well. Below are three more examplesunderstood well. Below are three more examples

�� Note that the Colon Operator alone refers to the Note that the Colon Operator alone refers to the entire row or columnentire row or column

 -->M = testmatrix('magi',4);

 -->A = M(2:3,2:3)
 A =

 11. 10.
 7. 6.

 -->M = testmatrix('magi',4);

 -->B = M(:,3)
 B =

 3.
 10.
 6.
 15.

 -->M = testmatrix('magi',4);

 -->C = M(3:4,:)
 C =

 9. 7. 6. 12.
 4. 14. 15. 1.

 -->v = [3 4 5 6 7 8 9];

 -->v($:-1:1)
 ans =

 9. 8. 7. 6. 5. 4. 3.

Operators (3/4): Operators (3/4):

the $ Operatorthe $ Operator

-->M = testmatrix('magi',4)
M =

16. 2. 3. 13.
5. 11. 10. 8.
9. 7. 6. 12.
4. 14. 15. 1.

-->M($)
ans =

1.

-->M(1:$-1,$)
ans =

13.
8.
12.

�� The The $$ Operator refers to the last Operator refers to the last
value, value, $$--11 to the value next to the to the value next to the
last, etc.last, etc.

�� The example to the right shows some The example to the right shows some
uses of the uses of the $$ OperatorOperator

�� The The $$ Operator can be used to flip the Operator can be used to flip the
order of elements in a vector, as order of elements in a vector, as
shown below (an alternative method shown below (an alternative method
was demonstrated in Ex 1was demonstrated in Ex 1--3, Task 1)3, Task 1)

Operators (4/4): the Operators (4/4): the

Backslash Operator (Backslash Operator (\\))

�� Backslash (Backslash (\\) denotes left matrix division.) denotes left matrix division. x=Ax=A\\bb is a solution to is a solution to
A*x=bA*x=b , which is important e.g. in control engineering, which is important e.g. in control engineering

�� If A is If A is square and nonsingularsquare and nonsingular, , x=Ax=A\\bb is equivalent to is equivalent to x=x=inv(Ainv(A)*b)*b
but the computation burden is smaller and the result is more but the computation burden is smaller and the result is more
accurateaccurate

�� Here you can see theHere you can see the
warning given whenwarning given when
Scilab sees singularityScilab sees singularity
in left division.in left division.

In this case In this case MatlabMatlab
produces a differentproduces a different
answer than Scilabanswer than Scilab
(Example from book by(Example from book by
Hunt et al.)Hunt et al.)

 -->A = [3 -9 8; 2 -3 7; 1 -6 1]; b = [2 -1 3]';

 -->x = A\b
 Warning :
 matrix is close to singular or badly scaled. rcond = 4.1895D-18
 computing least squares solution. (see lsq).

 x =

 0.
 - 0.5641026
 - 0.3846154

Duplicating an mx1 Duplicating an mx1

vector to an vector to an mxnmxn matrixmatrix

�� The Colon Operator allows us to The Colon Operator allows us to
duplicate vectors to form a matrixduplicate vectors to form a matrix

�� Assume that we have the column Assume that we have the column
vector m = (2:2:6)vector m = (2:2:6)’’; meaning that ; meaning that
it has three rowsit has three rows

�� We want to form a 3x4 matrix We want to form a 3x4 matrix
where each column consists of the where each column consists of the
vector mvector m

-->m = (2:2:6)';

-->n = 4;

-->A = m(:, ones(n,1))
A =

2. 2. 2. 2.
4. 4. 4. 4.
6. 6. 6. 6.

Pay attention to the command m(:, ones(n,1). Verbally it can be
interpreted as: “Form a matrix with the number of rows defined by the
column vector m and the number of columns defined by the variable
n. Fill the matrix with ones and multiply each row by the corresponding
value of m. Repeat just once.”

Singularities and left Singularities and left

divisiondivision

�� The terms The terms ““singularsingular”” and and ““nonsingularnonsingular”” emerged on the previous emerged on the previous
slide slide

�� A requirement of nonsingular A requirement of nonsingular square matricessquare matrices is that the determinant is that the determinant
is nonzero. Consider the following cases:is nonzero. Consider the following cases:

�� Earlier we found that Earlier we found that DDüürerrer’’ss magic square is singular, so is magic square is singular, so is e.ge.g the the
matrix A = [1 2 3; 4 5 6; 7 8 9]matrix A = [1 2 3; 4 5 6; 7 8 9]

�� Before performing left division with square matrices one should Before performing left division with square matrices one should
check that the determinant of the coefficient matrix is nonzerocheck that the determinant of the coefficient matrix is nonzero, e.g. , e.g.
by testing that by testing that clean(det(Aclean(det(A)) ~= 0)) ~= 0

6 2
5 3

= 6·3 – 2·5 = 8 , it is therefore nonsingular

6 3
2 1

= 6·1 – 3·2 = 0 , meaning that it is singular

˥
˩

˥
˩

˥
˩

˥
˩

Strings (1/6): they are Strings (1/6): they are

matrices toomatrices too
�� Character (letters, text, special characters) strings can be creCharacter (letters, text, special characters) strings can be created by ated by

using single or double quotes:using single or double quotes:

’’This is a &#ck2 stringThis is a &#ck2 string’’, , ””and so is thisand so is this””

�� Typical use of strings is in plot commands, to define the title Typical use of strings is in plot commands, to define the title and x and x
and yand y--labels. Other uses are interactive inputs and outputs (labels. Other uses are interactive inputs and outputs (input()input(), ,
dispdisp()(),, etc.), and write commands (etc.), and write commands (write(%io(2),.....)write(%io(2),.....)))

�� Strings are considered as 1x1 matrices (scalars) in Scilab, but Strings are considered as 1x1 matrices (scalars) in Scilab, but mixed mixed
character/numeric strings are typically 1x3 matrices. It is showcharacter/numeric strings are typically 1x3 matrices. It is shown on n on
the next slid with the commandthe next slid with the command

disp(['Was it €' string(a) 'that you said?'])

Elements: 1 2 3Elements: 1 2 3

�� Example 2Example 2--44 shows an additional application of stringsshows an additional application of strings

Strings (2/6): Strings (2/6): dispdisp(), (),

string()string()
�� The most usual string display The most usual string display

command is command is dispdisp()(), where the , where the
text has to be in quotation text has to be in quotation
marks: marks: disp(disp(‘‘texttext’’)) or or
disp([disp([‘‘texttext’’])])

�� Numeric dataNumeric data can be added to can be added to
dispdisp([])([]), but has to be , but has to be
converted to stringsconverted to strings using the using the
function function string()string()

�� Scilab knows Scilab knows MatlabMatlab’’ss conversion conversion
command command num2str()num2str(),, but in the but in the
form form mtlb_num2str()mtlb_num2str()

�� Leave out the square brackets Leave out the square brackets
and the elements are displayed and the elements are displayed
as a column, starting with the last as a column, starting with the last
(Last In First Out)(Last In First Out)

�� Commas are optional with square Commas are optional with square
brackets, but not with brackets brackets, but not with brackets
onlyonly

 -->a = 125;

 -->disp(['Was it €' string(a) 'that you said?'])

 !Was it € 125 that you said? !

 -->b = 521;

 -->disp(['No, I said €' mtlb_num2str(b) '!'])

 !No, I said € 521 ! !

 -->disp('in action', 'LIFO', 'This is')

 This is

 LIFO

 in action

Strings (3/6): Strings (3/6): dispdisp() vs. () vs.

mprintfmprintf()()

�� As seen on the previous slide, As seen on the previous slide,
dispdisp()() gives LIFO output with an gives LIFO output with an
empty line between the elementsempty line between the elements

�� To avoid the empty line, we can To avoid the empty line, we can
use the use the mprintfmprintf()() function with function with
the line declaration the line declaration \\nn . In this . In this
case the output is First In First case the output is First In First
Out. Note that the argument is a Out. Note that the argument is a
single stringsingle string

�� Check with the Help Browser for Check with the Help Browser for
other applications of other applications of mprintfmprintf()()

 -->disp('in action', 'LIFO', 'This is')

 This is

 LIFO

 in action

 -->mprintf(‘\nThis is \nFIFO \nin action')

 This is
 FIFO
 in action

// strings.sce /

// Demo of write() and input() functions /

clear,clc;
write(%io(2),'This is an interactive demo.');
write(%io(2),'You will be asked to give the base length');
write(%io(2),'and height of a triangle. Scilab then');
write(%io(2),'computes the area.');
write(%io(2),' '); // Empty row
b = input('Give length of triangle base: ');
h = input('Give height of triangle: ');
write(%io(2),' '); // Empty row
disp(['triangle_area = ' string(b*h/2)])

Strings (4/6): write(), Strings (4/6): write(),

input()input()
�� String arguments in the String arguments in the

write()write() and and input()input()
functions allow us to build functions allow us to build
interactive codesinteractive codes

�� In the shown example In the shown example
write()write() is first used to give is first used to give
general information to the general information to the
user, after which user, after which input()input()
prompts for data required in prompts for data required in
the calculationthe calculation

�� The The %io(2)%io(2) argument of the argument of the
write()write() function tells that function tells that
the target is the Console. All the target is the Console. All
actions after the script is actions after the script is
loaded into Scilab take place loaded into Scilab take place
on the Consoleon the Console

This is an interactive demo.
 You will be asked to give the base length
 and height of a triangle. Scilab then
 computes the area.

 Give length of triangle base: 5
 Give height of triangle: 4

 !triangle_area = 10 !

Strings(5/6): other useful Strings(5/6): other useful

commandscommands

Some of the functions discussed earlier in this chapter can have string
matrices (below S) as arguments:

Returns the number of characters in each string elementlength(S)

Returns the number of rows and columns in Ssize(S)

Returns the Returns the columnwisecolumnwiselocation of a string element in the location of a string element in the
matrix*matrix*find(condition)

Returns S with elements rearranged column-by-column in
alphanumerically descending order* gsort(S)

Not defined for stringsNot defined for stringsprod(), min(),
max(), mean()

*) See demo on the next slide

-->cars = ['Audi' 'BMW' 'Fiat'; '343' 'Saab' 'Xantia']
cars =

!Audi BMW Fiat !
! !
!343 Saab Xantia !

-->find(cars=='Saab')
ans =

4.

-->find(cars=='Volvo')
ans =

[]

-->gsort(cars)
ans =

!Xantia Fiat Audi !
! !
!Saab BMW 343 !

Strings(6/6): demo with Strings(6/6): demo with

find() & find() & gsortgsort()()

�� To the right is a 3x2 matrix To the right is a 3x2 matrix
called called ““carscars””

�� The function The function find()find() identifies identifies
and returns the location of a and returns the location of a
specified string within the specified string within the
matrixmatrix

�� In case there is no match, In case there is no match,
an empty matrix is returned an empty matrix is returned

�� The function The function sort()sort() orders orders
string elements columnstring elements column--byby--
column in alphanumerically column in alphanumerically
descending order (note that descending order (note that
the number 343 is accepted the number 343 is accepted
without being declared without being declared
string)string)

-->sc = ['x' 'y'; 'z' 'v+w']
sc =

! x y !
! !
! z v+w !

-->tsc = trianfml(sc)
tsc =

! z v+w !
! !
! 0 z*y-x*(v+w) !

-->x=1; y=2; z=3; v=5; w=4;

-->evstr(tsc)
ans =

3. 9.
0. - 3.

Symbolic computingSymbolic computing

�� Matrices of Matrices of character stringscharacter strings are are
constructed as ordinary matrices, e.g. constructed as ordinary matrices, e.g.
using square bracketsusing square brackets

�� A very important feature of matrices of A very important feature of matrices of
character strings is the capacity to character strings is the capacity to
manipulate and create functionsmanipulate and create functions

�� Symbolic manipulation of mathematical Symbolic manipulation of mathematical
objects can be performed using objects can be performed using
matrices of character stringsmatrices of character strings

�� In the shown cases the function In the shown cases the function
trianfmltrianfml()() performs symbolic performs symbolic
triangularizationtriangularization of the matrix of the matrix scsc, and , and
the function the function evstrevstr()() evaluates the evaluates the
expression expression tsctsc

Arrays: generalArrays: general

�� The term The term ““arrayarray”” refers to any refers to any
systematic arrangement of systematic arrangement of
objects, usually in rows and objects, usually in rows and
columns (numeric arrays, diode columns (numeric arrays, diode
arrays, antenna arrays, etc.) arrays, antenna arrays, etc.)

�� Arrays have some important Arrays have some important
uses, e.g. for uses, e.g. for building tablesbuilding tables

�� Arithmetic operations on arrays Arithmetic operations on arrays
are done are done elementelement--byby--elementelement, ,
meaning that addition and meaning that addition and
subtraction are the same for subtraction are the same for
arrays and matricesarrays and matrices

�� Scilab uses the Scilab uses the Dot Operator (.)Dot Operator (.)
for array operationsfor array operations

�� The table to the right is a list of The table to the right is a list of
array operatorsarray operators

power.^

unconjugated array transpose.’

left division.\

right division./

multiplication.*

subtraction-

addition+

Arrays: building a tableArrays: building a table

-->n = (0:9)';

-->powers = [n n.^2 2.^n]
powers =

0. 0. 1.
1. 1. 2.
2. 4. 4.
3. 9. 8.
4. 16. 16.
5. 25. 32.
6. 36. 64.
7. 49. 128.
8. 64. 256.
9. 81. 512.

�� Assume that we have a Assume that we have a
column vector column vector n=(0 9)n=(0 9) ’’

�� We can then build a table We can then build a table
with a simple functionwith a simple function——in in
the shown case with the shown case with
columns for columns for nn, , n^2n^2 and and
2^n2^n

�� This type of tables are This type of tables are
useful e.g. when useful e.g. when
processing measurement processing measurement
datadata

�� The second example The second example
shows that Scilab treats shows that Scilab treats
the created table as a the created table as a
normal matrixnormal matrix

-->p = powers(4:5,1:2)
p =

3. 9.
4. 16.

-->q = powers(3,2)*powers(4,3)
q =

32.

ElementElement--byby--element element

multiplication and divisionmultiplication and division

�� ElementElement--byby--element element
multiplication with the use of multiplication with the use of
the the Dot OperatorDot Operator can also be can also be
performed on twoperformed on two--dimensional dimensional
matricesmatrices

�� In the first example we In the first example we
multiply, elementmultiply, element--byby--element, element,
two 2x2 matrices to form a 2x2 two 2x2 matrices to form a 2x2
product matrix Cproduct matrix C

�� Note the different result with Note the different result with
ordinary matrix multiplicationordinary matrix multiplication

�� And here we divide the same And here we divide the same
matrices elementmatrices element--byby--element to element to
form a 2x2 matrix of quotientsform a 2x2 matrix of quotients

-->A = [1 2; 3 4]; B = [5 6; 7 8]; C = A.*B
C =

5. 12.
21. 32.

-->D = A*B
D =

19. 22.
43. 50.

-->E = A./B
E =

0.2 0.3333333
0.4285714 0.5

Right and left divisionRight and left division

�� As As shown in the table aboveshown in the table above, Scilab , Scilab
allows left and right elementallows left and right element--byby--
element division (.element division (.\\ and ./ and ./
respectively)respectively)

�� The difference between the two is The difference between the two is
which of the two division elements is which of the two division elements is
the numerator and which the the numerator and which the
denominatordenominator

�� As shown by the examples, left As shown by the examples, left
division means that the element in the division means that the element in the
left matrix becomes the denominator, left matrix becomes the denominator,
with right division it is the nominatorwith right division it is the nominator

-->A = [1 2; 3 4]
A =

1. 2.
3. 4.

-->B = [5 6; 2 -3]
B =

5. 6.
2. - 3.

-->A.\B
ans =

5. 3.
0.6666667 - 0.75

-->A./B
ans =

0.2 0.3333333
1.5 - 1.3333333

The exponent function exp() is a
special case in being defined as an
element-by-element operation

Dot Operator pitfallsDot Operator pitfalls

�� In practical simulations Scilab often In practical simulations Scilab often
flashes error messages due to wrong flashes error messages due to wrong
use of the Dot Operatoruse of the Dot Operator——or the absence or the absence
of itof it

�� A particular problem is division with an A particular problem is division with an
integer in the nominator. As shown to integer in the nominator. As shown to
the here, the first case is interpreted by the here, the first case is interpreted by
Scilab as B = (1.0)/A and the second as Scilab as B = (1.0)/A and the second as
C = (1.0)./A C = (1.0)./A Try to remember!Try to remember!

�� Those with experience of Those with experience of MatlabMatlab should should
be aware that the priority of the Dot be aware that the priority of the Dot
Operator is Operator is different indifferent in ScilabScilab

�� This is not an issue with multiplicationThis is not an issue with multiplication

-->A = [1 2 3 4];

-->B = 1./A
B =

0.0333333
0.0666667
0.1
0.1333333

-->C = (1)./A
C =

1. 0.5 0.3333333 0.25

-->D = 2.*A
D =

2. 4. 6. 8.

-->E = (2).*A
E =

2. 4. 6. 8.

x=input('Give a number :');
if modulo(x,2)==0 then

disp('Number is even');
else

disp('Number is odd');
end

A few more functions A few more functions

(1/5): modulo()(1/5): modulo()

�� Then command Then command modulo(n,mmodulo(n,m))
computes the reminder of computes the reminder of nn
divided by divided by mm (where (where nn and and mm
are integers)are integers)

�� With matrices With matrices modulo()modulo()
computes the reminder computes the reminder
elementelement--byby--elementelement

�� modulo()modulo() comes handy e.g. comes handy e.g.
when we need to check if a when we need to check if a
number is even or odd (the number is even or odd (the ifif--
thenthen--elseelse--end end construct will construct will
be discussed in Chapter 11)be discussed in Chapter 11)

�� There is a related function There is a related function
pmodulopmodulo()(). Check with Help. Check with Help

-->modulo(3,2)
 ans =

 1.

-->n=[1,2; 10,15]; m=[2,2; 3,5];

 -->modulo(n,m)
 ans =

 1. 0.
 1. 0.

 Give a number :1443

 Number is odd

 Give a number :24

 Number is even

A few more functions A few more functions

(2/5): (2/5): getdategetdate()()
�� We saw We saw getdategetdate()() in action in action

already in Example 1already in Example 1--3, 3,
where it was used towhere it was used to
improve randomnessimprove randomness

�� Another use ofAnother use of getdategetdate()() is to is to
put a date stamp on the put a date stamp on the
printout of a simulationprintout of a simulation

�� getdategetdate()() has numerous has numerous
alternative arguments. In alternative arguments. In
addition to those used in Ex. addition to those used in Ex.
11--3 there are e.g. the ones 3 there are e.g. the ones
shown to the right. Check shown to the right. Check
with Help for detailswith Help for details

�� The starting point of the The starting point of the
““clockclock”” of of getdategetdate()() is UTC is UTC
00:00 on 1 January 197000:00 on 1 January 1970

-->xp=getdate();

-->xp(1),xp(2),xp(3),xp(4),xp(5),xp(6),xp(7)
ans =

2011.
ans =

3.
ans =

12.
ans =

83.
ans =

5.
ans =

24.
ans =

11.

(1) present year

(2) present month

(3) present week

(4) day of the year

(5) weekday (Thu)

(6) day of the month

(7) hour of the day

A few more functions A few more functions

(3/5): unique()(3/5): unique()

�� Recall that Recall that unique()unique() was used was used
in Ex. 1in Ex. 1--3 in the condition 3 in the condition
length(unique(numberslength(unique(numbers))<7))<7
to ascertain that the lotto row to ascertain that the lotto row
contained only unique numberscontained only unique numbers

�� Here Here unique()unique() is used to is used to
identify generated integers in identify generated integers in
the range [1,5] the range [1,5]

�� In the second case In the second case unique()unique()
picks out unique rows in a picks out unique rows in a
matrix. Change matrix. Change ‘‘rr’’ to to ‘‘cc’’ to find to find
unique columnsunique columns

�� Compare Compare unique()unique() with with find()find()
that was discussed earlierthat was discussed earlier

 -->M=round(5*rand(5,1))'
 M =

 5. 2. 1. 5. 4.

 -->unique(M)
 ans =

 1. 2. 4. 5.

round() was
up in Ex. 1-3

0 and 3
are absent

A = [0 0 1 1;
0 1 1 1;
2 0 1 1;
0 2 2 2;
2 0 1 1;
0 0 1 1];

disp(['Unique rows are:'])
disp(unique(A,'r'))

 Unique rows are:

 0. 0. 1. 1.
 0. 1. 1. 1.
 0. 2. 2. 2.
 2. 0. 1. 1.

A few more functions A few more functions

(4/5): rand()(4/5): rand()
�� We have seen the random We have seen the random

number generatornumber generator rand()rand()
several times alreadyseveral times already

�� rand()rand() can generate two can generate two
types of numbers, either types of numbers, either
with with uniformuniform or or GaussianGaussian
distribution. Uniform is the distribution. Uniform is the
default, Gaussian (normal) default, Gaussian (normal)
is selected with the is selected with the
argument argument ‘‘normalnormal’’ (or (or ‘‘nn’’))

�� To the right are To the right are
histograms of 2000 histograms of 2000
random numbers random numbers
generated with uniform generated with uniform
and Gaussian distribution and Gaussian distribution
(the latter with mean 0, (the latter with mean 0,
variance 1) variance 1)

// rand_demo1.sce

clear,clc,clf;

u_fun=rand(1,2000);
subplot(121);
histplot([-4:0.1:4],u_fun,2,'073',' ',[-4,0,4,1.2],[3,3,2,3]);
xtitle('Uniform')

G_fun=rand(1,2000,'n');
subplot(122);
histplot([-4:0.1:4],G_fun,2,'073',' ',[-4,0,4,1.2],[3,3,2,3]);
xtitle('Gaussian')

A few more functions A few more functions

(5/5): grand()(5/5): grand()

// grand_demo.sce

// Plot histograms of Chi-square, exponential, /
// and Poisson distributions with 10^5 draws /

clear,clc,clf;

Chi=grand(100,1000,'chi',3) // Chi, 3 deg freedom
Exp=grand(100,1000,'exp',3) // Exponential, mean 3
Poi=grand(100,1000,'poi',3) // Poisson, mean 3

x = [0:.1:12];
subplot(131);
histplot(x,Chi,2)
legend(['Chi-square'])

subplot(132);
histplot(x,Exp,5)
legend(['Exponential'])

subplot(133);
histplot(x,Poi,13)
legend(['Poisson'])

The function The function grand()grand() is is more more
versatileversatile than than rand()rand(). It allows . It allows
most existing distributions to most existing distributions to
be generated. Shown here is be generated. Shown here is
an example with Chian example with Chi--square, square,
exponential, and Poisson exponential, and Poisson
distribution histogramsdistribution histograms

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

6. Examples, Set 2 6. Examples, Set 2

Adds to what we have learned Adds to what we have learned
so farso far

Return to Contents

Example 2Example 2--1: solving an 1: solving an

equation systemequation system

�� The task is to solve the following system of equations:The task is to solve the following system of equations:

x1 + 2x 2 – x 3 = 1
-2x 1 – 6x 2 + 4x 3 = -2

-x 1 – 3x 2 + 3x 3 = 1

�� We can write it in the matrix form Ax = b, where:We can write it in the matrix form Ax = b, where:

�� Next we set up the equations in Scilab to find the solution x:Next we set up the equations in Scilab to find the solution x:

1
b = -2

1

1 2 –1
A = -2 –6 4 ,

-1 –3 3

Ex 2Ex 2--1: script & solution1: script & solution

-->exec algebra1.sce

-->// algebra1.sce /
-->//
-->// Find the solution x in /
-->// Ax = b /
-->//

-->A = [1 2 -1; -2 -6 4; -1 -3 3];
-->b = [1; -2; 1];
-->x = A\b
x =

- 1.
2.
2.

The code for the
equation system
as entered in
Editor and named
algebra1.sce.
Note the
Backslash
Operator (\)

// algebra1.sce

// Find the solution to x in /
// Ax = b /

A = [1 2 -1; -2 -6 4; -1 -3 3];
b = [1; -2; 1];
x = A\b

algebra1.sce has to be
run from the Console
since the script contains
no disp() command

The solution:

x1 -1
x2 = 2
x3 2

x =

 - 1.
 2.
 2.

 residual =

 0.
 0.
 0.

// algebra1.sce

// Find the solution x in /
// Ax = b /

A = [1 2 -1; -2 -6 4; -1 -3 3];
b = [1; -2; 1];
x = A\b

// algebra1_check.sce /
// Make sure that b - Ax = 0 /

residual = b - A*x

Ex 2Ex 2--1: checking the 1: checking the

resultresult

�� It is good practice to check It is good practice to check
oneone’’s solutionss solutions

�� In this case it can be done by In this case it can be done by
making sure that the residual making sure that the residual
B B –– AxAx is exactly zerois exactly zero

�� The altered code is renamed The altered code is renamed
algebra1_check.sce and algebra1_check.sce and
saved before being executedsaved before being executed

�� The result is 0, as hoped for The result is 0, as hoped for
(note that there is no (note that there is no
rounding error here; the rounding error here; the
result is exactly zero)result is exactly zero)

Ex 2Ex 2--1: what should have 1: what should have

been done beforebeen done before

�� In line with what has been said In line with what has been said
earlier, we should start by earlier, we should start by
checking that the determinant of checking that the determinant of
the coefficient matrix A is the coefficient matrix A is
nonsingular (ok, Scilab would nonsingular (ok, Scilab would
have yelled if that had been the have yelled if that had been the
case)case)

�� We can test it in hindsight and We can test it in hindsight and
see that this is not the casesee that this is not the case

�� When writing a program for When writing a program for
practical applications we must practical applications we must
include the zero check in the include the zero check in the
script. This, however, requires script. This, however, requires
flow control flow control (conditional (conditional
branching) that will be discussed branching) that will be discussed
in in Chapter 11 Chapter 11

 -->A = [1 2 -1; -2 -6 4; -1 -3 3];

 -->det(A)
 ans =

 - 2.

Problem: The determinant
of the coefficient matrix A
must be non-zero

Example 2Example 2--2: solving 2: solving

currents in a DC circuitcurrents in a DC circuit

Task: Determine the four
currents i1, i2, i3, and i4
for the shown DC circuit

As drawn, the figure allows
Kirchhoff’s voltage law to
be applied. However, the
method leads to a non-
square matrix and tools
like the Backslash Operator
(\) and multiplication with
inverse matrices cannot be
applied

ΩΩ

Ω

Ω

Ex 2Ex 2--2: mesh2: mesh--currentscurrents

Instead, superposition of
currents with mesh-
current equations can be
used. Along the current
loops the diagonal term
resistances are:

R11 = 10 Ω
R22 = 12 Ω
R33 = 18 Ω

The common (off-
diagonal) resistances are:

R12 = -8 Ω, R13 = -2 Ω, R21 = -8 Ω, R23 = -4 Ω, R31 = -2 Ω,
R32 = -4 Ω (You should be able to figure out the logic)

Ω

Ω

Ω

Ω

Ex 2Ex 2--2: solution2: solution

These values allow us to write the
following mesh-current equations:

We execute the script in the Console
and compute manually the current
values that we are looking for:

i1 = i_1 – i_3 = 1.5 A
i2 = i_2 – i_3 = 1.25 A
i3 = i_3 = 1 A
i4 = i_1 – i_2 = 0.25 A

// circuit1.sce

// Mesh-current solution for Example 4 /

R = [10 -8 -2; -8 12 -4; -2 -4 18];
u = [5 3 4]';
i_n = R\u
residual = clean(u - R*i_n) // Check

i_n =

 2.5
 2.25
 1.
 residual =

 0.
 0.
 0.

10 -8 -2 i_1 5
-8 12 -4 i_2 = 3
-2 -4 18 i_3 4

Ex 2Ex 2--2: comments2: comments

�� The example shows that we have to find the right method to The example shows that we have to find the right method to
be able to use matrix operationsbe able to use matrix operations

�� Is there reason to use matrices, which are the alternatives?Is there reason to use matrices, which are the alternatives?
�� The first alternative would be to proceed from the initial The first alternative would be to proceed from the initial

diagram and apply Kirchhoffdiagram and apply Kirchhoff’’s voltage law, and solve the s voltage law, and solve the
problem manually. It is a quite tedious taskproblem manually. It is a quite tedious task

�� Another alternative is to start manual calculations from the Another alternative is to start manual calculations from the
set of meshset of mesh--current equations by using current equations by using CramerCramer’’s rules rule. .
However, it also requires a good dose of algebra since we However, it also requires a good dose of algebra since we
have to compute determinants for several equations before have to compute determinants for several equations before
we can divide the results to find the solutions we can divide the results to find the solutions

�� In short, using Scilab to manipulate matrices simplifies the In short, using Scilab to manipulate matrices simplifies the
undertaking. With more complicated circuits the difference is undertaking. With more complicated circuits the difference is
even more pronouncedeven more pronounced

Example 2Example 2--3: continuous3: continuous--

time statetime state--space modelspace model

�� The figure shows a typical a The figure shows a typical a
continuouscontinuous--time statetime state--space space
model, defined by the matrix model, defined by the matrix
equationsequations

xx’’= Ax + Bu= Ax + Bu
y = y = CxCx + Du+ Du

where
A A = system matrix = system matrix
B B = input matrix= input matrix
C C = output matrix= output matrix
D D = = feedforwardfeedforward matrixmatrix
x x = state vector= state vector
xx’’= = dx/dtdx/dt
u u = input vector= input vector
y y = output vector= output vector

Ex 2Ex 2--3: the task3: the task

�� Assume a system given by:Assume a system given by:

�� The input u is constant at 0.5The input u is constant at 0.5

�� The initial state vector The initial state vector x0 = [0 0]x0 = [0 0], i.e., x = 0 at t = 0, i.e., x = 0 at t = 0

�� The task is to plot the output y and state variable responses The task is to plot the output y and state variable responses
(x, x(x, x’’) for t = 0) for t = 0 …… 3030

B = 0 1
0 1

-1 –0.5
A = ,

C = 1 0 , D = 0

Ex 2Ex 2--3: script3: script

�� First the stateFirst the state--
space model is space model is
defineddefined

�� Note the Note the syslinsyslin()()
function that function that
defines a linear defines a linear
system system

�� Next, the Next, the
responses due to responses due to
initial state and initial state and
external input external input
signal signal uu are are
simulated using simulated using
csimcsim()()

�� To finish, the To finish, the
responses at responses at
outputoutput yy and state and state
variables variables xx andand
xx’’areare plotted in plotted in
separate windows separate windows

// state_space.sce

// Simulates a continuous-time state-space /
// system model /

clear,clc;
A=[0,1;-1,-0.5]; // System matrices
B=[0;1];
C=[1,0];
D=[0];
x0=[0;0]; // Initial state
sys=syslin('c',A,B,C,D,x0); // Create cont.-time ('c') system model
t=[0:0.1:30]; // Time vector
u=0.5*ones(1,length(t)); // Create constant input signal

[y,x]=csim(u,t,sys); // Compute with u=input, y=output, x=states

scf(1); clf; // Open and clear figure 1
plot(t,y); // Plot response in y

xtitle('RESPONSE AT OUTPUT y','t');
ax1=gca(); ax1.grid=[2,5]; // Handle: add grid to y-plot

scf(2); clf; // Open and clear figure 2
plot(t,x); // Plot response in x

xtitle('RESPONSE OF STATE VARIABLES','t');
legend('x','dx/dt',1); // Add legend to x-plot
ax1=gca(); ax1.grid=[2,5]; // Handle: add grid to x-plot

Ex 2Ex 2--3: plots3: plots

Note the use of the function scf(number) (set current figure) to produce
two plots

Ex 2Ex 2--3: comments (1/3)3: comments (1/3)

�� Apart from demonstrating matrix operations, this example Apart from demonstrating matrix operations, this example
introduced a number of new concepts:introduced a number of new concepts:
–– definition of a linear system with the definition of a linear system with the syslinsyslin()() function, in which function, in which

the string the string ‘‘cc’’ as input argument denotes as input argument denotes ““continuous.continuous.”” The The
initial state initial state x0=[0;0]x0=[0;0] is not needed since x0=0 is the default is not needed since x0=0 is the default
value, but it is there if we want to make changesvalue, but it is there if we want to make changes

–– Scilab Scilab lacks a unit step functionlacks a unit step function; the constant input signal is ; the constant input signal is
constructed with a unit vector (using constructed with a unit vector (using ones()ones())) of length = of length = tt

–– simulation of the defined system was done by the simulation of the defined system was done by the csimcsim()()
function, with function, with uu, , tt, and , and syssys as input argumentsas input arguments

–– csimcsim()() produces the output arguments produces the output arguments yy and and xx, which are used , which are used
by the plotting commands. Check by the plotting commands. Check HelpHelp for a detailed explanationfor a detailed explanation

–– two plots are created since, with this particular system, two plots are created since, with this particular system, xx and and yy
would otherwise overlap. would otherwise overlap. xx and and xx’’ are plotted automaticallyare plotted automatically

–– the the ax1=ax1=gcagca()() and and ax1.grid=[2,5]ax1.grid=[2,5] pair of commands tells that pair of commands tells that
we want a grid with blue vertical and red horizontal lines we want a grid with blue vertical and red horizontal lines

Ex 2Ex 2--3: comments (2/3)3: comments (2/3)

For a linear system, we can use either a transfer function or state-
space representation. Their differences:

Time response methodFrequency response method

MatrixLaplace transform

State variables are shownSome internal couplings are hidden

Representation with more
parameters

System representation becomes more
compact with fewer parameters

Multiple input / Multiple outputSingle input / Single output

State descriptionsInput/Output descriptions

Internal descriptionExternal description

StateState--spacespaceTransfer functionTransfer function

In common are block diagrams and their manipulations, poles and zeros

Ex 2Ex 2--3: comments (3/3)3: comments (3/3)

�� It is possible to shift between transfer functions and stateIt is possible to shift between transfer functions and state--
space representation:space representation:

–– tf2ss()tf2ss(), transfer function to state, transfer function to state--spacespace
–– ss2tf()ss2tf(), state, state--space to transfer functionspace to transfer function

�� These functions are needed e.g. when These functions are needed e.g. when discretizingdiscretizing continuouscontinuous--
time models, for which Scilab has the function time models, for which Scilab has the function dscrdscr()() but but
which is valid only for statewhich is valid only for state--space modelsspace models

�� See tutorial by Haugen, section 9.6, for a brief discussion. A See tutorial by Haugen, section 9.6, for a brief discussion. A
detailed discussion is given in the obsolete detailed discussion is given in the obsolete Signal Processing Signal Processing
With ScilabWith Scilab, sections 1.5, 1.7, and 2.1 (you can access both , sections 1.5, 1.7, and 2.1 (you can access both
through through <http://wiki.scilab.org/Tutorials>))

Example 2Example 2--4: string 4: string

functions, scriptfunctions, script

// conv_seconds.sce

// The script asks for a number of seconds, /
// checks that the given number is positive, /
// then converts the number into hours, /
// minutes, and seconds /

clear,clc;
time = input("Give time in seconds: ");
if time < 0 // Check if time >= 0

disp("ERROR, negative number") // Display error message
abort // and abort execution

else
minut = floor(time/60); // Convert to minutes
seconds = modulo(time,60); // Remaining seconds
hours = floor(minut/60); // Convert to hours
minutes = modulo(minut,60); // Remaining minutes
disp(string(hours)+" hour(s) "... // Display answer
+string(minutes)+" minute(s) “…
+string(seconds)+" second(s) ")

end

The if...else...end
construct will be
discussed in Chapter 11

This example relates to
the discussion on strings
in Chapter 5

Strings as disp()
arguments

Note interplay between
floor() and modulo()

String as input()
argument

Ex 2Ex 2--4: string functions, 4: string functions,

execution & commentsexecution & comments

 Give time in seconds: 0

 0 hour(s) 0 minute(s) 0 second(s)

 Give time in seconds: -3600

 ERROR, negative number

 Give time in seconds: 7465.33

 2 hour(s) 4 minute(s) 25.33 second(s)

Below is the result of
three different runs

In the script, the initial cleaning
command is clear,clc;. If clf was
included it would cause the Graphics
Window to pop up unnecessarily (in
Ex 2-3 it would have produced an
extra empty window)

In a case like this it is irritating that
the Console does not become active
after the execution command is given
on the Editor. You automatically begin
to type in the response once the
string command pops up, but the
cursor is still on the Editor…

In this example we for the first time
use a sanity check (if time < 0 ...) to
make certain that the user does not
cause problems by wrong inputs

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

7. Graphics & plotting7. Graphics & plotting

2D & 3D plots, subplots & other 2D & 3D plots, subplots & other
types of plots; editing plotstypes of plots; editing plots

Return to Contents

The Graphics WindowThe Graphics Window

�� The toolbar allows rotation and The toolbar allows rotation and
zoom of a plotzoom of a plot

�� Of real interest is Of real interest is EditEdit in the menu bar, in the menu bar,
and the and the Figure propertiesFigure properties and and Axes Axes
propertiesproperties, that are shown when clicking , that are shown when clicking
on on EditEdit

�� However, However, Figure propertiesFigure properties is is
ambiguous, all options can be found ambiguous, all options can be found
under under Axes propertiesAxes properties

Note: The Demonstration
feature has a good presentation
of plotting functions, but it also
contains obsolete ones

getcolorgetcolor()()

�� When working with graphics When working with graphics
you may want to check which you may want to check which
colors are available in Scilab colors are available in Scilab
and which their codes or and which their codes or
names arenames are

�� ScilabScilab’’s color palette can be s color palette can be
brought up by entering the brought up by entering the
command command getcolorgetcolor()() on the on the
ConsoleConsole

�� By clicking on a color in the By clicking on a color in the
palette its number, RGB palette its number, RGB
composition, and name are composition, and name are
displayed at the bottom of displayed at the bottom of
the window (the window (ScilabScilab 5.3.x 5.3.x
does not display the last two, does not display the last two,
33 33 ““greengreen”” and 34 and 34 ““greygrey””).*).*

*) I miss more light colors for use as
plot backgrounds.

Plot function demosPlot function demos

�� You get a demo of certain plot You get a demo of certain plot
functions by entering the functions by entering the
function name on the Console. function name on the Console.
Examples:Examples:

–– grayplotgrayplot()()
–– errbarerrbar()()
–– plot3d()plot3d()
–– fplot3d1()fplot3d1()

Axes EditorAxes Editor

The most useful
editing objects are
Axes() and
Polyline(). Here
the Axes window is
open

There are seven
object properties
that can be played
with, the one for
the x-axis is shown

Plot editing demo, Plot editing demo,

starting pointstarting point

�� LetLet’’s start by plotting a s start by plotting a
sine and cosine curve on sine and cosine curve on
the same framethe same frame

�� The resulting plot is not The resulting plot is not
very sexyvery sexy

�� So letSo let’’s do some editing to s do some editing to
give it a more attractive give it a more attractive
appearanceappearance

�� Start by clicking Start by clicking
EditEdit\\Axes propertiesAxes properties

 -->t=(-2*%pi:0.01:2*%pi)';

 -->plot2d(t,[sin(t),cos(t)])

Plot editing demo, Plot editing demo,

edited plotedited plot
�� To change sine and cosine To change sine and cosine

colors, Click: colors, Click: Figure Figure
objectobject\\ColormapColormap, mark a , mark a
one (1) for: one (1) for: 1 1 RED, RED, 22 BLUEBLUE

�� Sine/cosine style: Sine/cosine style: AxesAxes\\
CompoundCompound\\PolylinePolyline, select , select
Line solidLine solid 3 for both3 for both

�� x/yx/y axes: axes: AxesAxes\\TextText ““x/yx/y
axisaxis””, , File modeFile mode on, on, Fore Fore
colorcolor 13, 13, Font sizeFont size 3, 3, Axis Axis
locationlocation middle, middle, Grid colorGrid color
1313

�� Title: Title: TextText ““SINE AND SINE AND
COSINECOSINE””, , Font sizeFont size 3, 3,
Font ColorFont Color 1313

�� Style: Style: Font sizeFont size 2 (Axes labels)2 (Axes labels)

Editing the Graphics Editing the Graphics

WindowWindow

�� The Figure Editor allows us to give the Graphics Editor a more The Figure Editor allows us to give the Graphics Editor a more
colorful appearance. Play for a while with the Editorcolorful appearance. Play for a while with the Editor’’s object s object
properties and you can find e.g. the following alternatives:properties and you can find e.g. the following alternatives:

Graphics Window Graphics Window

commandscommands

�� The command for The command for creatingcreating a a
new Graphics Window for new Graphics Window for
plots is:*plots is:*

scfscf ()()

for figures:for figures:

show_windowshow_window ()()

and the obsolete:**and the obsolete:**

xsetxset ()()

Scilab commands starting with
x are usually associated with
Graphics Window. The history
of the x goes back to the X
window system in Unix

�� WindowsWindows--related clear/ related clear/
delete commands are e.g.:delete commands are e.g.:

clfclf ()()
xdelxdel ()()
delete()delete()

obsolete are:obsolete are:

xclearxclear ()()
xselectxselect ()()
xbascxbasc ()() (Removed)(Removed)

**) Obsolete functionscan be seen
in most Scilab tutorials, but they
should be avoided.

*) Single plots can be created
without the scf() command.

Why Why plot()plot() and and plot2d()plot2d()??

�� Both Both plot()plot() and and plot2d()plot2d() create 2D plotscreate 2D plots
�� plot()plot() is borrowed from is borrowed from MatlabMatlab. Persons with . Persons with MatlabMatlab experience may experience may

want to use it (and frankly, want to use it (and frankly, the benefits of the benefits of plot2d() plot2d() are doubtfulare doubtful))
�� Scilab has the added Scilab has the added plot2d()plot2d() function. It offers more options to function. It offers more options to

tailor the plot. Multiple plots, for instance (recall however thtailor the plot. Multiple plots, for instance (recall however that at
multiple plots were done with multiple plots were done with plot()plot() in Ex 1in Ex 1--2):2):

// multiple_plot.sce

// Demonstrates one alternative offered /
// by the plot2d() function /

clear,clc,clf;

x = [0:0.01:2*%pi]';
plot2d(x,[sin(x) sin(2^x) sin(3*x)],rect=[0,0,6,1])
legend('sin(x)','sin(2^x)','sin(3*x)')

plot2d(): syntaxplot2d(): syntax

�� The The plot2d()plot2d() syntax can be used as a guide for some other plot syntax can be used as a guide for some other plot
commands, e.g. for commands, e.g. for fplot2d()fplot2d()and and histplothistplot()()

�� plot2d()plot2d() has the following arguments:has the following arguments:

plot2d(logflag,x,y,optional arguments)plot2d(logflag,x,y,optional arguments)

�� x x and and yy can be either vectors or matrices but with different can be either vectors or matrices but with different
outcomes for the plot. outcomes for the plot. logflaglogflag is used only with logarithmic plots, is used only with logarithmic plots,
wewe’’ll se it in a demo laterll se it in a demo later

�� The set of optional arguments is:The set of optional arguments is:

style, style, strfstrf, leg, , leg, rectrect, , naxnax
Axes label and tick
definitions (vector)

Minimum bounds for
the plot (vector: [xmin,
ymin, xmax, ymax])

Legend (string,
often seen
empty (' ‘))

Control of display captions
(by default “081”)

Graph style
(numeric)

Note: plot2d() has
also a slightly

different old syntax

plot2d(): syntax demoplot2d(): syntax demo

�� linspacelinspace()() is not accepted hereis not accepted here

�� style = 5style = 5 produces a red graphproduces a red graph

�� legleg is empty (' ') in sine plotis empty (' ') in sine plot

�� style=style=--99 produces circle marksproduces circle marks

�� A legend is added to the figure A legend is added to the figure
with the second plot commandwith the second plot command

// plot2d_demo.sce

clear,clc,clf;

x = 0:0.1:2*%pi; // x axis definition
y1 = sin(x); // Function 1
y2 = cos(x); // Function 2

style1 = 5; // “style” for sin
strf1 = '174'; // “strf”
rect = [0,-1.2,2*%pi,1.2]; // “rect”
nax = [4,%pi,4,7]; // “nax”
plot2d(x,y1,style1,strf1,' ',rect,nax)

style2 = -9; // “style” for cos
strf2 = ‘000’; // No axes changes
leg = ‘sin@cos’; // Legend definition
plot2d(x,y2,style2,strf2,leg)

Scilab may not accept the legend
command as it has done here (bug?)

plot2d(): multiple plotsplot2d(): multiple plots

�� The previous slide showed how The previous slide showed how
to create multiple graphs in a to create multiple graphs in a
single window with two single window with two
separate separate plot2d()plot2d() commandscommands

�� Multiple graphs can be declared Multiple graphs can be declared
in a single in a single plot2d()plot2d() statement statement
using a using a vector argumentvector argument

�� The case shown here also The case shown here also
differs from the previous one differs from the previous one
by having argument by having argument
declarations declarations ‘‘in situin situ’’

�� Scilab does not properly adjust Scilab does not properly adjust
the plot to the window; only the plot to the window; only
the first legend showsthe first legend shows

// plot2d_multiple.sce

// Multiple graph declarations in a single /
// plot2d() command /

clear,clc,clf();

x=[0:0.1:2*%pi]';
plot2d(x,[sin(x) cos(2*x) sin(3*x-%pi/2)],...

[2,13,5],... // Graph colors
leg=“sin(x)@cos(x)@sin(3x)",... // Legend
nax=[3,6,2,5],... // Ticks & marks
rect=[0,-1.5,2*%pi,1.5]); // Axes

plot2d(): style codesplot2d(): style codes

�� We have several times come across number codes for graph colors We have several times come across number codes for graph colors
(style, the number after the x and y arguments in (style, the number after the x and y arguments in plot2d()plot2d()))

�� Color codes are those that can be found with the Color codes are those that can be found with the getcolorgetcolor()()
command on the Console. The most important ones are 1=black, command on the Console. The most important ones are 1=black,
2=blue (9=dark blue), 3=green (13=dark green), 5=red, 8=white, 2=blue (9=dark blue), 3=green (13=dark green), 5=red, 8=white,
and 25=brownand 25=brown

�� On the previous slide we saw that the code On the previous slide we saw that the code --9 creates circles. Plug 9 creates circles. Plug
in in getmarkgetmark()() on the Console to see the whole list, including codes on the Console to see the whole list, including codes
for mark sizes that you can use with handle commands. There are for mark sizes that you can use with handle commands. There are in in
all 15 of these marks (always black):all 15 of these marks (always black):

••

00 --33 --44 --55 --66 --77 --88 --99 --1010 --1414--1313--1212--1111--22--11

plot2d(): demo with plot2d(): demo with

matricesmatrices

 -->x = [.5 .7 .9 1.3 1.7 1.8]';

 -->y = [.1 .2 .75 1.5 2.1 2.4]';

 -->plot2d(x,y, style=1)

-->scf();

 -->plot2d(x,y, style=-1)

The simple script below demonstrates the
plot2d() command when arguments x and
y are matrices, and the style is 1 and -1

scf() is used to
open a new
Graphics
Window.
Otherwise the +
marks of the
second plot2d()
command would
be on top of the
first one

The command is clearer if arguments are
written in plain (style=-1) but, a shown in
earlier demos, the number alone is enough

fplot2d() fplot2d()

�� fplot2d()fplot2d() is a variant of is a variant of plot2d()plot2d()

�� With With fplot2d()fplot2d() a a functionfunction and its and its
definitions can be definitions can be included in the included in the
argumentsarguments

�� The general form of The general form of fplot2d()fplot2d() is:is:

fplot2d(x,f,opt arguments)fplot2d(x,f,opt arguments)

�� The demo to the right shows a The demo to the right shows a
case wherecase where
–– x = linspace(x = linspace(--10,10,100)10,10,100)
–– f = Scilabf = Scilab’’s ins in--built built sincsinc functionfunction
–– style=5 is an optional argumentstyle=5 is an optional argument

�� There is also a There is also a 3D alternative3D alternative, ,
fplot3d()fplot3d()

-->fplot2d(linspace(-10,10,100),sinc,style=5)

x f
opt arg

plot(): the beauty of plot(): the beauty of

simplicity (1/2) simplicity (1/2)
�� MatlabMatlab/Scilab/Scilab’’ss plot()plot() function* function*

offers a simpler way to distinguish offers a simpler way to distinguish
between multiple plots than does between multiple plots than does
plot2d()plot2d(). It is by using keyboard . It is by using keyboard
characters, the way it was done characters, the way it was done
on on teleprintersteleprinters half a century ago half a century ago

�� Here three graphs are plotted with Here three graphs are plotted with
one one plot()plot() command. The style command. The style
definitions are definitions are ''oo'', , ''x,x,'' and and ''<.<.'' Note Note
that that tt is repeated for each graphis repeated for each graph

�� It can be seen that It can be seen that ''<<'' (red) gives (red) gives
a triangle that points in the a triangle that points in the
direction of the path of the linedirection of the path of the line

// plot()_demo.sce

// Demonstration of plot() syntax /

clf();

t=0:0.1:2*%pi;
plot(t,sin(t),'o',.. // Plot with 'o'

t,cos(t),'x',.. // Plot with 'x'
t,abs(sin(t+%pi/4)),'<') // Plot with '<‘

*) Scilab’splot() function does not
support all properties of its Matlab
counterpart

plot(): the beauty of plot(): the beauty of

simplicity (2/2) simplicity (2/2)

'pentagram''pentagram'

<<

>>

vv

^̂

'diamond' or 'd''diamond' or 'd'

'square' or 's''square' or 's'

xx

SquareSquareDashedDashedlineline----

DiamondDiamondDotted lineDotted line::

UpwardUpward--pointing trianglepointing triangleDashDash--dotteddottedlineline-- ..

DownwardDownward--pointing trianglepointing trianglePlus signPlus sign++

RightRight--pointing trianglepointing triangleCircleCircleoo

LeftLeft--pointing trianglepointing triangleAsteriskAsterisk**

FiveFive--armed stararmed starPointPoint..

CrossCrossSolid line (default)Solid line (default)--

The following list contains main line style codes for plot():

Color arguments are: k – Black, w – White, r - Red, g - Green, b – Blue,
c – Cyan, m – Magenta, y – Yellow (the letter should be in front of the
style code, inside single or double quotes, e.g. ''r+'')

3D graphs: plot3d()3D graphs: plot3d()

�� The syntax of The syntax of plot3d()plot3d() is quite similar to that of is quite similar to that of plot2d()plot2d(). . In In
addition to the mandatory addition to the mandatory x,y,zx,y,z arguments, the arguments, the plot 3d()plot 3d() function function
cancan——among other possibilitiesamong other possibilities——have following arguments:have following arguments:

plot3d(x,y,z,theta,alpha,leg,flag,ebox) plot3d(x,y,z,theta,alpha,leg,flag,ebox)

�� Check with Check with HelpHelp for an explanationfor an explanation

�� Below weBelow we’’ll plot a 3D graph of the ll plot a 3D graph of the sincsinc function function sin(x)/xsin(x)/x, using , using
some of the surface definition capabilities of some of the surface definition capabilities of plot3d()plot3d()

�� Scilab defines only the 2D Scilab defines only the 2D sinc(xsinc(x)) function so to shift to 3D we will function so to shift to 3D we will
apply the expressionapply the expression

r = r = √√(x(x22 –– yy22))

�� Of the above mentioned arguments weOf the above mentioned arguments we’’ll use ll use leg=leg=““X@Y@ZX@Y@Z”” to to
label label x,yx,y, and z axes and , and z axes and flag=[flag=[mode,type,boxmode,type,box]] to define surface to define surface
color, scaling and frame of the plotcolor, scaling and frame of the plot

3D graphs: plot3d(),3D graphs: plot3d(),

script & plot for 3D script & plot for 3D sincsinc()()

// sinc3D.sce

// Plot the sinc function (sin(x)/x) using plot3d() /
// with surface definition arguments /

clear,clc,clf;

x = linspace(-10,10,50);
y = linspace(-10,10,50);
[X,Y] = ndgrid(x,y); //Create array for xy grid
Z = 50*sin(sqrt(X.^2 + Y.^2))./sqrt(X.^2 + Y.^2);
plot3d(x,y,Z,leg=“X@Y@Z",flag=[4,2,4])

Pay attention to [X,Y] = ndgrid(x,y)
& use of the Dot Operator in Z

Change plot3d() for plot3d1()
to get a different texture

A different approach to this
task is shown in Example 3-5.
There is a bug in the script
given in Help/meshgrid

// surf_ex1.sce

// Plot the function /
// z=(2x^2 - y^2)exp(-x^2 - 0.5y^2) /
// for -2<x<2, -3<y<3, where < indicates /
// "less than or equal to" /

clear,clc,clf;
x=linspace(-2,2,30); // Linear spacing
y=linspace(-3,3,30);
[X,Y]=meshgrid(x,y); // Surface mesh
Z=(2*X.^2-Y.^2).*exp(-X.^2-0.5*Y.^2);
surf(X,Y,Z) // Plot 3D surface

3D graphs: surf(), 3D graphs: surf(),

task & scripttask & script

�� The function The function linspace(a,b,mlinspace(a,b,m))
creates linearly spaced x and y creates linearly spaced x and y
row vectors (row vectors (““from a to b with m from a to b with m
equal incrementsequal increments””))

�� Using vectors x and y, the Using vectors x and y, the [X,Y] [X,Y]
= = meshgrid(x,ymeshgrid(x,y)) command command
creates a 2D matrix in the creates a 2D matrix in the xyxy--
planeplane

�� Generate ZGenerate Z--values for each values for each
element of the 2D matrixelement of the 2D matrix

�� Plot the resulting 3D functionPlot the resulting 3D function

�� Write a script that plots the functionWrite a script that plots the function
z = (2*xz = (2*x22 –– yy22)exp()exp(--xx22 -- 0.5*y0.5*y22)), ,

where where --2 2 ≤≤ x x ≤≤ 2 and 2 and --3 3 ≤≤ y y ≤≤ 33

3D plots: surf(), plot3D plots: surf(), plot

Ain’t that cute!

The colors may not be
all that great but they
can be changed with
handle commands.
This will be shown in
Example 3-5

surf() has a parallel
form called mesh()
that is used in the
same way as surf()
but it lacks shading

If you click on the display button for surf() in the Help Browser, Scilab
first displays a number of alternatives and then crashes.

Contour plots: contour()Contour plots: contour()

�� LetLet’’s return to the expression s return to the expression z = (2*xz = (2*x22 –– yy22)exp()exp(--xx22 –– 0.5*y0.5*y22)), ,
and plot its 2D contour (level/height curves)and plot its 2D contour (level/height curves)

�� It only requires the scriptIt only requires the script’’s plot command to be changeds plot command to be changed

// contour.sce

// Plot the 2D height curves for the /
// function /
// z=(2x^2 - y^2)exp(-x^2 - 0.5y^2) /
// for -2<x<2, -3<y<3, where < indicates /
// "less than or equal to" /

clear,clc,clf;
x=linspace(-2,2,30);
y=linspace(-3,3,30);
[X,Y]=meshgrid(x,y);
Z=(2*X.^2-Y.^2).*exp(-X.^2-0.5*Y.^2);
contour(x,y,Z,10)

Vector fields: champ()Vector fields: champ()

�� The 2D vector field for the expression The 2D vector field for the expression z = (2*xz = (2*x22 –– yy22)exp()exp(--xx22 --
0.5*y0.5*y22)) can be visualized by changing the plot expression to can be visualized by changing the plot expression to
champ()champ(), and adjusting the intervals in the , and adjusting the intervals in the linspacelinspace()() functions:functions:

// vector_field.sce

// Plot the 2D vector fields for the function /
// z=(2x^2 - y^2)exp(-x^2 - 0.5y^2) /
// for -2<x<2, -3<y<3, where < indicates /
// "less than or equal to" /

clear,clc,clf;
x=linspace(-2,2,10);
y=linspace(-3,3,10);
[X,Y]=meshgrid(x,y);
Z=(2*X.^2-Y.^2).*exp(-X.^2-0.5*Y.^2);
champ(x,y,X,Y)

// contour-vector.sce

// Plot the combined contour and vector /
// fields for the function /
// z=(2x^2 - y^2)exp(-x^2 - 0.5y^2), /
// for -2<=x<=2, -3<=y<=3 /

clf;
x=linspace(-2,2,15);
y=linspace(-3,3,15);
[X,Y]=meshgrid(x,y);
Z=(2*X.^2-Y.^2).*exp(-X.^2-0.5*Y.^2);
champ(x,y,X,Y)
contour(x,y,Z,10)

Mixed contours and Mixed contours and

vector fieldsvector fields

�� Vector fields are not very informative per se, but the situationVector fields are not very informative per se, but the situation
improves when they are fused with contoursimproves when they are fused with contours

�� In the previous case, just insert the In the previous case, just insert the champ()champ() and and contour()contour()
commands into the same script and you get them in one plot:commands into the same script and you get them in one plot:

Cutting a 3D surfaceCutting a 3D surface

// cutting.sce

// Cut the the function /
// z=(2*x^2 - y^2)exp(-x^2 - 0.5*y^2) /
// along the plane y = -1 /

clf;
x=linspace(-2,2,50);
y=linspace(-1,-1,0);
[X,Y]=meshgrid(x,y);
Z=(2*X.^2-Y.^2).*exp(-X.^2-0.5*Y.^2);
plot2d(X,Z,5)

�� We can see the outline of the 3D surface We can see the outline of the 3D surface z = (2*xz = (2*x22 –– yy22)exp()exp(--xx22 --
0.5*y0.5*y22)) at a certain plane by defining the plane in case (below y = at a certain plane by defining the plane in case (below y =
--1) and by returning to 2D plotting:1) and by returning to 2D plotting:

Mixed 2D/3D plots (1/2): Mixed 2D/3D plots (1/2):

scriptscript

Question: Should contour()
come before or after
plot3d()?

Answer: Scilab accepts
both alternatives, but with
dramatically different
results

Only the first flag[]
argument of contour() has
an influence on the plot

// plot3d-contour.sce

// Plot the combined 3D graph and contour /
// of the function /
// z=(2x^2 - y^2)exp(-x^2 - 0.5y^2), /
// for -2<=x<=2 and -3<=y<=3 /

clear,clc,clf;
x=linspace(-2,2,30);
y=linspace(-3,3,30);
[X,Y]=meshgrid(x,y);
Z=(2*X.^2-Y.^2).*exp(-X.^2-0.5*Y.^2); // Same as before
contour(x,y,Z,10,flag=[0,0,0]); // First flag[] argument
plot3d(x,y,Z,theta=60,alpha=80); // Turn 60 and 80 deg

Scilab has its own ideas of what it should do if a Scilab has its own ideas of what it should do if a contour()contour() command command
is added to the script of a 3D plot command (is added to the script of a 3D plot command (plot3d()plot3d(), , surf()surf()). Trial). Trial
and error is neededand error is needed

Mixed 2D/3D plots (2/2): Mixed 2D/3D plots (2/2):

plotplot

The surface looks
different from when it
was plotted using surf().
The reason is that the x
and y axes are inverted
compared with the earlier
case

No point in denying, there
remains unsolved issues
regarding the behavior of
Scilab in this case

3D plot with hole3D plot with hole

The The %%nannan function allows certain z values to be excluded from a 3D function allows certain z values to be excluded from a 3D
plot:plot:

// hole.sce

// 3D surface with a hole punched /
// into it with the %nan command /
// (z values not to be represented) /

clear,clc,clf;

function z = f(x, y)
z=2*x^2+y^2;

endfunction

x = linspace(-1,1,50);
y = linspace(-2,2,100);
z = (feval(x,y,f))'; // Evaluate function
z(75:90,20:35) = %nan; // Definition of hole
surf(x,y,z) // Plot surface

There is “Polish logic” behind
the z arguments that asks for
trial & error to get it right

subplot()subplot()

�� Subplots are a way of presenting multiple graphs on a single fraSubplots are a way of presenting multiple graphs on a single frameme
�� The function The function subplot(m,n,psubplot(m,n,p)), or , or ((mnpmnp)), splits the Graphics Window , splits the Graphics Window

into m rows and n columns, and the subplot in case occupies into m rows and n columns, and the subplot in case occupies
position p. In the case of four position p. In the case of four subwindowssubwindows, , subplot(22p)subplot(22p), the , the
position of p is as shown:position of p is as shown:

�� WeWe’’ll do it for the ll do it for the z = (2*xz = (2*x22 –– yy22)exp()exp(--xx22 -- 0.5*y0.5*y22)), by fusing the , by fusing the
four earlier cases into a single framefour earlier cases into a single frame

p=1 p=2

p=3 p=4

subplot(): demo scriptsubplot(): demo script

// subplot.sce

// Presents different aspects of /
// the function /
// z=(2x^2 - y^2)exp(-x^2 - 0.5y^2) /
// in four subplots /

clear,clc,clf;
x=linspace(-2,2,30);
y=linspace(-3,3,30);
[X,Y]=meshgrid(x,y);
Z=(2*X.^2-Y.^2).*exp(-X.^2-0.5*Y.^2);
subplot(221)
surf(X,Y,Z)

subplot(222)
contour(x,y,Z,10)

x=linspace(-2,2,10);
y=linspace(-3,3,10);
[X,Y]=meshgrid(x,y);
Z=(2*X.^2-Y.^2).*exp(-X.^2-0.5*Y.^2);
subplot(223)
champ(x,y,X,Y)

x=linspace(-2,2,50);
y=linspace(-1,1,0);
[X,Y]=meshgrid(x,y);
Z=(2*X.^2-Y.^2).*exp(-X.^2-0.5*Y.^2);
subplot(224)
plot2d(X,Z,5)

Note that only the plot function
has been repeated for (222)

subplot(): demo plotsubplot(): demo plot

There is
another
function for
subplots:
xsetech().
Check with
Help for
details

plot2d2(), plot2d3(), plot2d2(), plot2d3(),

plot2d4(): demo, scriptplot2d4(): demo, script

// plot2dx.sce

// Demonstration of the basic sinc function plotted /
// with plot2d(), plot2d2(), plot2d3(), and plot2d4() /

clear,clc,clf;
x = linspace(-10,10,50);

subplot(221);
plot2d(x,sinc(x),style=5) // Plot continuous line
xtitle('plot2d')

subplot(222);
plot2d2(x,sinc(x),style=2) // Plot with steps
xtitle('plot2d2')

subplot(223);
plot2d3(x,sinc(x),style=2) // Plot vertical bars
xtitle('plot2d3')

subplot(224);
plot2d4(x,sinc(x),style=2) // Plot arrow style
xtitle('plot2d4')

�� The The plot2d()plot2d() function has function has
three variants:three variants:

�� plot2d2()plot2d2() for step functionsfor step functions

�� plot2d3()plot2d3() for vertical barsfor vertical bars

�� plot2d4()plot2d4() for arrow style linesfor arrow style lines

�� The effect of these plotting The effect of these plotting
commands on the commands on the sincsinc()()
function is shown on the next function is shown on the next
slideslide

plot2d2(), plot2d3(), plot2d2(), plot2d3(),

plot2d4(): demo, plotplot2d4(): demo, plot

Note: You
can still see
the obsolete
plot2d1() in
manuals.
plot2d()
should be
used instead
(In contrast,
plot3d1() is
not declared
obsolete)

Histograms: functions to Histograms: functions to

create them withcreate them with

�� Histograms are graphical presentationHistograms are graphical presentation——typically rectanglestypically rectangles——
of oneof one--dimensional datadimensional data

�� ScilabScilab’’s main function for plotting histograms is:s main function for plotting histograms is:
histplot(x,data,opt_argumentshistplot(x,data,opt_arguments))

�� Bar diagrams, a common form of histograms, are given by:Bar diagrams, a common form of histograms, are given by:
bar(x,y,width,color,stylebar(x,y,width,color,style))

or, for or, for horizontal bars:horizontal bars:
barh(x,y,width,color,stylebarh(x,y,width,color,style))

�� 33--dimensional bar diagrams can be created by the command:dimensional bar diagrams can be created by the command:
hist3d(z,opt_arguments)hist3d(z,opt_arguments)

and with added and with added xx and and yy vectors:vectors:
hist3d(list(z,x,y),opt_arguments)hist3d(list(z,x,y),opt_arguments)

�� Check Check HelpHelp for more detailsfor more details

Histograms: demo, scriptHistograms: demo, script

�� The The script(sscript(s) below are intended to demonstrate different) below are intended to demonstrate different
types of histograms, presented as (22p) subplotstypes of histograms, presented as (22p) subplots

subplot(223)
hist3d(5*rand(8,4)) // 3D histogram

subplot(224)
z=10*rand(3,4);
x=[1 3 5 6];
y=[1 2 7 11 20];
hist3d(list(z,x,y)) // 3D hist, add x/y vectors

// histogram_subplot.sce

// Demonstration of histogram types /
// using subplots /

clear,clc,clf;
subplot(221)
data=rand(1,10000,'normal');
histplot(20,data) // Traditional histogram

subplot(222)
y=[1 3 5 6 8];
z=[y;4 3 2 2 1]'; // Transpose necessary!
bar(z,0.7,'stacked') // “on top of each other”

The list() argument defines the
distribution of random z values
over the x,y plane

Histograms: demo, plotHistograms: demo, plot

Old graphics syntax Old graphics syntax

(1/2): demo, script(1/2): demo, script

// multiple_plots2.sce

// Demonstration of a method for producing /
// three plots y1=f(x1), y2=f(x2),y3=f(x3) /
// in the same frame. Note how the frame /
// is defined /

clear,clc,clf;
x1 = linspace(0,1,61);
x2 = linspace(0,1,31);
x3 = linspace(0.1,0.9,12);
y1 = x1.*(1-x1).*cos(2*%pi*x1); // First graph
y2 = x2.*(1-x2); // Second graph
y3 = x3.*(1-x3) + 0.1*(rand(x3)-0.5); // Third, as y2 with disturbance

ymin = min([y1,y2,y3]); // Select minimum to define frame bottom
ymax = max([y1,y2,y3]); // Select maximum to define frame top
dy = (ymax - ymin)*0.1; // Border for min/max
rect = [0,ymin - dy,1,ymax+dy]; // Frame limits, start at 0

plot2d(x1,y1,5,"011"," ",rect) // First call with frame definitions
plot2d(x2,y2,2,"000") // Second call, only type/color (2) definition
plot2d(x3,y3,-1,"000") // Third call, defines marks(-1)
xtitle("THREE GRAPHS PLOTTED IN THE SAME FRAME","Abscissa","Ordinate")

ScilabScilab’’s graphics s graphics
syntax changed with syntax changed with
version 3.1.version 3.1. This This
demo shows the old demo shows the old
plot2d()plot2d() syntax for syntax for
a case with three a case with three
plots,plots,

y1=f(x1)y1=f(x1), , y2=f(x2)y2=f(x2)
andand y3=f(x3)y3=f(x3),,

in the same frame in the same frame

Note the frame Note the frame
definition and definition and
compare with the compare with the
method used in method used in
Example 1Example 1--22

Old graphics syntax Old graphics syntax

(2/2): demo, plot(2/2): demo, plot

y3

y2

y1

// rotation_surface.sce

// Plot the rotation surface created by /
// the function y=2+sin(x) as it rotates /
// around the x-axis /

clear,clc,clf;

// Define function to rotate:
//------------------------------------
x=-10:.01:10;
subplot(211)
plot2d(x,2+sin(x),5,rect=[-6.5,0,9,3])

// Rotate 2+sin(x) around y-axis:
//--
t=linspace(-6.5,9,60);
phi=linspace(0,2*%pi,60);
[T,PHI]=meshgrid(t,phi); // Create mesh
X=T;
Y=(2+sin(T)).*sin(PHI);
Z=(2+sin(T)).*cos(PHI);
subplot(212)
surf(X,Y,Z)

Rotation surfacesRotation surfaces

The rotation
surface is
created by
multiplying
the original
function,
which is
redefined as
2+sin(T), by
.*sin(PHI)
and
.*cos(PHI)

// log_plot.sce

// Plot the Bode diagram for the function /
// G(s) = 100/((s-10)(s-90)). Use the normal /
// logarithmic x-axis and decibel scale on /
// the y-axis /

clear,clc,clf;
w = logspace(-1,3,100); // Define log scale for w
s = %i*w; // Define imaginary s
G = 100../((s-10).*(s-90)); // Define G(s)
y = 20*log10(abs(G)); // Define dB scale for y
plot2d(w,y,5,logflag='ln') // Plot y=f(w)
xtitle("Bode plot for G(s)=100/((s-10)(s-90))","w,...

log scale","y, dB scale")
xgrid() // Add grid

Logarithmic scale:Logarithmic scale:

task & scripttask & script

�� Plot the Bode diagram for the Plot the Bode diagram for the
functionfunction

where s = iwhere s = iωω and the angular and the angular
frequency frequency ωω = 0.1 = 0.1 …… 10001000

�� Note double dots Note double dots 100../(s100../(s--
10)10) in the G command. First in the G command. First
dot is a decimal point, then dot is a decimal point, then
comes the Dot Operator comes the Dot Operator

�� Put the logarithmic Put the logarithmic ωω--axis axis
horizontally and the decibel horizontally and the decibel
scale y=20(scale y=20(||G(G(ωωi)i)||) vertically) vertically

(s-10)(s-90)

100
G(s) =

logspace(-1,3,100) = “from 10-1 to
103 in 100 logarithmically spaced
increments”

Logarithmic scale:Logarithmic scale:

the plotthe plot

The graph has been
edited after plotting

We have not before
mentioned the argument
logflag ‘ln’ in plot2d().
Change ‘ln’ to ‘nn’ (‘ll’ is
not possible here) and see
how the plot changes
(n=normal, l=logarithmic)

Note: Scilab has a special
function for Bode plots,
bode(). See Example 3-1

Polar coordinatesPolar coordinates

�� Polar coordinates are used Polar coordinates are used
frequently in some areas of frequently in some areas of
engineering, e.g. to present engineering, e.g. to present
antenna lobe diagramsantenna lobe diagrams

�� Plotting in polar coordinates is Plotting in polar coordinates is
done by the command done by the command
polarplotpolarplot()()

�� The demo shows the simple The demo shows the simple
script for a script for a cardioidcardioid,,
y = 1y = 1--cos(x)cos(x), and its plot, and its plot

�� Note the markers related to Note the markers related to
the the style= [style= [--3]3] argument argument

�� The plot has been edited, The plot has been edited,
which is time consuming for which is time consuming for
polar plotspolar plots

//cardioid.sce

// The script plots the cardioid /
// r = 1 - cos(x), for x = 0...2pi /

clear,clc,clf;
x = 0:0.07:2*%pi;
polarplot(x,1-cos(x),style=[-3])
legend('y = 1-cos(x)',4)

Exporting plotsExporting plots

� Scilab plots can be exported in various picture formats (PNG, SVG,
GIF, Bitmap, etc.) for use in documents

�� To export, Click To export, Click File/Export to...File/Export to... in the Graphics Window and in the Graphics Window and
select the target file as well as the wished formatselect the target file as well as the wished format

�� An alternative way is to use the An alternative way is to use the xs2*()xs2*() function which for PNG function which for PNG
takes the formtakes the form

xs2png(window_number, xs2png(window_number, file_namefile_name););

�� The following The following vectorialvectorial and and bitmapbitmap formats are possible:formats are possible:

xs2png() export to PNG
xs2pdf() export to PDF
xs2svg() export to SVG
xs2eps() export to EPS
xs2ps() export to Postscript
xs2emf() export to EMF (Windows)

xs2fig() export to FIG
xs2gif() export to GIF
xs2jpg() export to JPG
xs2bmp() export to BMP
xs2ppm() export to PPM

Handles (1/12): Handles (1/12):

introduction*introduction*

*) Recall the introduction to handles in Chapter 2. Handles were already used
in Example 2-3and when discussing polylines. This discussion is based on
Kubitzki: Grafik, Eigenschaften verwalten in Scilab, section 2.4.3 in
Champbell et al., and Steer: Scilab Graphics, 2007.

�� Handles are a thorny subject to Scilab Handles are a thorny subject to Scilab newbiesnewbies. Existing texts give . Existing texts give
only an incoherent treatment of the topic. The user is left withonly an incoherent treatment of the topic. The user is left with the the
option option ““try and crytry and cry””

�� We shall limit this discussion to the most essential handle propWe shall limit this discussion to the most essential handle properties, erties,
aiming at gaining a basic understanding of how plots are edited aiming at gaining a basic understanding of how plots are edited with with
handleshandles

�� It may help to view handles as an alternative to the Figure EditIt may help to view handles as an alternative to the Figure Editor or
that we already have used. The idea is the same in boththat we already have used. The idea is the same in both

�� The The Help BrowserHelp Browser discusses the subject under the heading discusses the subject under the heading
graphics_entitesgraphics_entites. Check also . Check also object_editorobject_editor

Handles (2/12): Handles (2/12):

introduction*introduction*

�� The Graphics Window is built as a The Graphics Window is built as a hierarchyhierarchy of objects. See the of objects. See the
hierarchic tree presented on the next slide, which also gives tyhierarchic tree presented on the next slide, which also gives typical pical
commands for each entitycommands for each entity

�� The topmost object in the window is called The topmost object in the window is called FigureFigure. We use the . We use the
function function gcfgcf()() , , get current figureget current figure, to influence the window as it pops , to influence the window as it pops
up on the screen. This is done with the handle up on the screen. This is done with the handle f = f = gcfgcf()()

�� Figure has a child called Figure has a child called AxesAxes, which in turn has several , which in turn has several childrenchildren, and , and
these again may have own children. Axes is called by the functiothese again may have own children. Axes is called by the function n
gcagca()(), , get current axesget current axes. The handle in case is . The handle in case is a = a = gcagca()(), but the , but the
alternative alternative a = a = f.childrenf.children also works also works

�� Pay attention to Pay attention to CompoundCompound, which has the important children , which has the important children LabelLabel
and and PolylinePolyline. The latter refers to the actual graph that we plot. The latter refers to the actual graph that we plot

�� Figure can have other children beside Axes. These are created byFigure can have other children beside Axes. These are created by
Scilab when we use certain commandsScilab when we use certain commands

Compare with the
structure of the
Graphics Editor’s
Object Browser
that we have used
to edit plots

Handles (3/12): basic Handles (3/12): basic

graphics hierarchygraphics hierarchy

h = gcf(); // Get figure handle

a = gca(); // Get axes handle or
a = h.children;

x = a.x_label // Get x_label handle

y = a.y_label // Get y_label handle

z = a.z_label // Get z_label handle (3D graphics)

t = a.title // Get title handle

c = a.children // Get compound handle

leg = c.children(1) // Get legend handle (if any)

pol = c.children(2) // Get polyline handle
(first graph in plot)

legend

polyline

x_label

y_label

z_label

title

compound

Figure

Axes

etc.

Handles (4/12): demo, Handles (4/12): demo,

starting pointstarting point
As a first exercise, let’s start from the script that was used in the
introduction to handles in Chapter 2:

// handles_demo1.sce

// Basic script to demonstrate handles /

x = linspace(0, 4*%pi, 100);
plot2d(x, 0.5*cos(x))

Lessons learned:
1) You have to be systematic when working with handles
2) The existing literature is not always correct. For instance, the

method suggested by Steer for changing axes ticks & marks simply
does not work (took me hours to figure out)

Handles (5/12): demo, Handles (5/12): demo,

behind the scenebehind the scene

When we call up the Axes
handle on the Console, it turns
out to be really long. On the top
of the list we find that Axes has
a child, Compound

-->gca()
 ans =

 Handle of type "Axes" with properties:
 =================================
 parent: Figure
 children: "Compound“
…

 -->gce()
 ans =

 Handle of type "Compound" with properties:
 ====================================
 parent: Axes
 children: "Polyline"
 visible = "on"
 user_data = []

A check with gce() reveals
that Compound in turn has a
child, Polyline. This matches
the hierarchy that we have
seen on the Figure Editor

Handles (6/12): demo, Handles (6/12): demo,

step 1step 1
We first define some changes
to the window:

- Adjust the window size
- Add background color
- Give the window a name

// handles_demo1.sce

// Basic script to demonstrate handles /

clear,clc,clf;

x = linspace(0, 4*%pi, 100);
plot2d(x, 0.5*cos(x))

f=gcf(); // Get Figure (window) handle
f.figure_size = [500,400]; // Adjust window size
f.background = 12; // Add background color
f.figure_name= "cosine"; // Name window

Check for details under
figure_properties in
the Help Browser

Handles (7/12): demo, Handles (7/12): demo,

step 2step 2
In this step we

- Move along the hierarchy ladder
- Edit the plot

by adding these lines to the
script (you can bypass the p1
definition stage and write
c.children.foreground … etc.)

Note that we move down the
hierarchy ladder: Figure ->
Axes -> Compound -> Polyline

Check for details under
polyline_properties in

the Help Browser

a=gca(); // Get Axes handle
a.background = 9; // Change background

c=a.children; // Get compound handle
p1=c.children; // Get polyline (plot) handle

p1.foreground = 8; // Change line color
p1.line_style = 7; // Change line style
p1.thickness = 3; // Line thickness

Change p1.line_style to
p1.polyline_style to get a

different plot

Handles (8/12): demo, Handles (8/12): demo,

step 3step 3

As shown earlier, the Entity handle
was quite empty. We need to add
labels that can be edited. For that
we add the following command to
the script:

xtitle(‘COSINE PLOT’,...
‘X-axis’,’Y-axis’);

And now the Entity handle has
undergone a dramatic change (this
is only the beginning of the list)

-->gce()
ans =

Handle of type "Axes" with properties:
======================================
parent: Figure
children: "Compound"

visible = "on“
axes_visible = ["on","on","on"]
axes_reverse = ["off","off","off"]
grid = [-1,-1]
grid_position = "background“
x_location = "bottom“
y_location = "left“
title: "Label“
x_label: "Label“
y_label: "Label“
z_label: "Label“
auto_ticks = ["on","on","on"]
x_ticks.locations = [0;2;4;6;8;10;12;14]
y_ticks.locations = matrix 11x1
z_ticks.locations = []
x_ticks.labels = ["0";"2";"4";"6";"8";"10";"12";"14"]
y_ticks.labels = matrix 11x1
z_ticks.labels = []
….

Handles (9/12): demo, Handles (9/12): demo,

step 4step 4
Title and axis labels have been
added, the next step is to edit
them

In each case we must first call
the respective handle (or skip
this stage by writing editing
commands in the form
a.title.font_style … etc.), then
edit the handle properties

The plot isn’t exactly a beauty,
but we’ll add a grid and edit
axes ticks & marks

xtitle('COSINE PLOT',... // Add title & labels
'X-axis','Y-axis');

t=a.title; // Get title handle
t.font_style = 5; // Times bold, italic
t.font_size = 3; // Increase font size

xL=a.x_label; // Get x_label handle
xL.font_style = 5; // Times bold, italic
xL.font_size = 2; // Increase font size

yL=a.y_label; // Get y_label handle
yL.font_style = 5; // Times bold, italic
yL.font_size = 2; // Increase font size

Check for details under
label_properties in
the Help Browser

Handles (10/12): demo, Handles (10/12): demo,

step 5step 5

Add grid

Change x-axis ticks & marks

Change y-axis ticks & marks

Final plot:

xgrid(5); // Add grid

// Change x/y ticks & marks:
a.x_ticks = tlist(['ticks','locations','labels'],...

[0,%pi,2*%pi,3*%pi,4*%pi,14],...
['0','pi','2*pi3','3*pi','4*pi','14']);

a.y_ticks = tlist(['ticks','locations','labels'],...
[-0.5,-0.25,0,0.25,0.5],...
['-0.5','-0.25','0','0.25','0.5']);

Note: There were
problems with ticks &
marks. Only the
presented syntax
worked

Handles (11/12): Handles (11/12):

comments (1/2)comments (1/2)

�� With handles we must observe the order of Scilab commands. For With handles we must observe the order of Scilab commands. For
instance, a script of the following type causes an error messageinstance, a script of the following type causes an error message from from
Scilab:Scilab:

�� The The error message confuseserror message confuses by referring to a by referring to a submatrixsubmatrix

�� The real reason is that we try to change the color of the plotteThe real reason is that we try to change the color of the plotted d
graph after the legend was declared. Scilab cannot jump back to graph after the legend was declared. Scilab cannot jump back to the the
legend and change it. legend and change it. The legend command has to come after The legend command has to come after
related handle declarationsrelated handle declarations. But there exceptions..... But there exceptions....

plot(…);
legend(“alpha”, “beta”);
……
a=gca();
a.children(1).foreground=5;
……

!--error 15
Submatrix incorrectly defined.

at line 6 of function %h_get called by :
at line 16 of function generic_i_h called by :
at line 2 of function %s_i_h called by :
children(1).foreground = 5; // Sum pattern re
at line 68 of exec file called by :
opulse_a-pattern.sce', -1

Handles (12/12): Handles (12/12):

comments (2/2)comments (2/2)

�� Handle commands are valid only Handle commands are valid only
specific levels (Figure, Axes, Entity, specific levels (Figure, Axes, Entity,
etc.). etc.). Help/Help/axes_propertiesaxes_properties gives gives
some hints but mostly you try & some hints but mostly you try &
cry and get error messagescry and get error messages

�� ScilabScilab has a has a hidden agendahidden agenda when it comes to handles. For instance, when it comes to handles. For instance,
the the polylinepolyline numbering works in quite strange ways...numbering works in quite strange ways...

�� Visual edition with handles undoubtedly improves the look of a Visual edition with handles undoubtedly improves the look of a
figure, but is the method an figure, but is the method an ““overkill?overkill?”” The amount of code needed The amount of code needed
to edit the plot can be larger that used to create the actual plto edit the plot can be larger that used to create the actual plotot

�� We should consider that We should consider that time = moneytime = money. The important thing is to . The important thing is to
come up with a script that is come up with a script that is ““fit for purposefit for purpose..”” The rest is luxuryThe rest is luxury

�� It is possible to change ScilabIt is possible to change Scilab’’s default settings, but information on s default settings, but information on
the subject is hard to come by (the subject is hard to come by (KubitzkiKubitzki discusses it briefly)discusses it briefly)

!--error 999
This object has no auto_clear property.
at line 4 of function generic_i_h called by :
at line 2 of function %c_i_h called by :

e2.auto_clear = "on";at line
71 of exec file called by :
examples\planet_moon1.sce', -1

PolylinesPolylines (1/3): (1/3): xpolyxpoly(), (),

scriptscript
�� This is an This is an attemptattempt to see how to see how

well we can work without well we can work without
ordinary plot functionsordinary plot functions

�� Compare with the Compare with the xpolyxpoly()()
example given in example given in Help Help and which and which
uses the obsoleteuses the obsolete xsetxset() () functionfunction

�� The The xpolyxpoly()() function draws a function draws a
polylinepolyline; the ; the polylinepolyline is a closed is a closed
polygon if the numeric argument polygon if the numeric argument
of of xpolyxpoly()() is >0is >0

�� Note the Note the e.parente.parent..... definition ... definition
that refers one step up in the that refers one step up in the
hierarchy, to Figurehierarchy, to Figure

�� With With e.childrene.children..... we move one ... we move one
step down in the hierarchystep down in the hierarchy

// xpoly.sce

// Attempt to plot a hexagon with xpoly() & edit /
// with handles. Causes erroneous behavior in /
// Scilab. The script must be closed to get rid of /
// the grey background color /

clear,clc,clf;

x = sin(2*%pi*(0:5)/6); // Define hexagon
y = cos(2*%pi*(0:5)/6); // - " –
xpoly(x,y,'lines',1); // Draw polygone

e=gca(); // Get Axes handle
e.parent.background =... // Get Figure handle

color('grey'); // & set background
e.box='on'; // Switch frame on
e.foreground=5; // Red frame color
e.data_bounds=[-2,-2;2,2]; // Frame size
e.children.foreground = 2; // Blue graph color

PolylinesPolylines (2/3): (2/3): xpolyxpoly(), (),

plot & discussionplot & discussion

And this is the polygon
that we have created:

x = sin(2*%pi*(0:6)/6);
y = cos(2*%pi*(0:6)/6);
plot2d(x,y,strf='011',rect=[-2,-2,2,2])

The unedited hexagon can
also be drawn with the
following script:

It is left open if we do a
small change to the x/y
arguments:

x = sin(2*%pi*(0:5)/6);
y = cos(2*%pi*(0:5)/6);
plot2d(x,y,strf='011',rect=[-2,-2,2,2])

PolylinesPolylines (3/3): (3/3): xpolyxpoly(), (),

lessons learnedlessons learned

�� Scilab showed unexpected behavior with this script:Scilab showed unexpected behavior with this script:
–– The background color could The background color could turn blackturn black with the command with the command e=e=gcegce();();

e.parent.backgrounde.parent.background=34 =34 . The . The gcfgcf()() handle revealed that the setting handle revealed that the setting
was was background=background=--22 and the handle command had no effect. The and the handle command had no effect. The
definition definition color(color(‘‘greygrey’’)) feels more stabile than its numeric counterpartfeels more stabile than its numeric counterpart

–– The Graphics Window did not always change when the script was The Graphics Window did not always change when the script was
changed and executed. The background stayed grey even if changed and executed. The background stayed grey even if
e.parent.backgrounde.parent.background==color(color(‘‘greygrey’’)) was deleted. When shifting was deleted. When shifting
between two scripts on the Editor, the background color was expobetween two scripts on the Editor, the background color was exported to rted to
the second script. The script had to be closed to get rid of thethe second script. The script had to be closed to get rid of the gray color gray color

–– I found I found no way to add ticksno way to add ticks & marks to the box. The Axes handle & marks to the box. The Axes handle gcagca()()
showed them as defined, but for some reason they are suppressed.showed them as defined, but for some reason they are suppressed.
Help/Help/axes_propertiesaxes_properties gives no explanationgives no explanation

�� Lessons learnedLessons learned: Do not exaggerate the extent to which you trade : Do not exaggerate the extent to which you trade
ordinary plot functions (ordinary plot functions (plot()plot(), , plot2d()plot2d()) for handle commands) for handle commands

Change
and
rerun

Programming pitfalls: Programming pitfalls:

dondon’’t forget t forget clfclf;;

// ptifalls_1.sce

// Clear commands /

K = 10; a = 0; b = 0;
x = zeros(1,K); y = zeros(1,K);
for k = 1:K
x(k) = a+k;
y(k) = b-k^(0.5);

end
plot2d3(x,y,style=-1)

// ptifalls_1.sce

// Clear commands /

K = 100; a = 0; b = 0;
x = zeros(1,K); y = zeros(1,K);
for k = 1:K
x(k) = a+k;
y(k) = b+k^(0.5);

end
plot2d3(x,y,style=-1)

Plots are
superposed
without the
clf command

What to do with What to do with xsetxset()?()?

� Examples in Scilab literature—and in blog discussions—frequently use the
function xset(). It’s handy but obsolete, so what should we do about it?

� The Help Browser recommends using the graphic objects representation
instead ((set()set(), , get()get(), handle commands), handle commands)

� Below are examples of how to substitute xset(). Note that xset() operates
on the current Entity level and gives the blue axes color, not the red graph

x=-1:0.1:2.6
plot2d(x,sin(2*x),5,rect=[-2,-2,3.6,2])
xset("color",2)

x=-1:0.1:2.6
plot2d(x,sin(2*x),5,rect=[-2,-2,3.6,2])
a=gca();
a.foreground=2

x=-1:0.1:2.6
plot2d(x,sin(2*x),5,rect=[-2,-2,3.6,2])
a=gca();
set(a,"foreground",2)

1. Initial script
with xset()

2. Modified script
with Axes handle
command

3. Modified script
with set() and
handle argument

xsetxset(): a practical case(): a practical case

h.thicknessh.thickness= 3= 3xset(xset(’’ thicknessthickness’’ ,3) ,3) line thicknessline thickness

h=h=gcagca()()

h.foregroundh.foreground= 2= 2xset(xset(’’ colorcolor’’ ,2) ,2) blue fillblue fill

h.foregroundh.foreground= 5= 5xset(xset(’’ colorcolor’’ ,5) ,5) red borderred border

h.backgroundh.background= 1= 1xset(xset(’’ backgroundbackground’’ ,1) ,1) blackblack

Handle graphics commandHandle graphics commandxsetxset() command() command

Example 6-2 (last set of examples) is adapted from PinPinççonon. The original
contained obsolete commands, in particular xset(). I substituted the
xset() commands with the following handle commands:

But frankly, it can be a pain and you want to throw the computer out
the window. If so, check if the gca() handle has any children at all...

Flawed error messagesFlawed error messages

�� ScilabScilab’’s debugger shows strengths and flaws in the error messages s debugger shows strengths and flaws in the error messages
that invariably pop up before onethat invariably pop up before one’’s plot commands are rights plot commands are right

�� Here are two error messages that I have got:Here are two error messages that I have got:

clc();
 !--error 13
 Redefining permanent variable.

 while executing a callback

Bogus warning, Scilab crashed
and had to be reloaded to
erase the Console. This
occurred when I used two
deff() functions in tandem

plot2d(x1,y1,style=5) // Function
!--error 999 plot2d:

first and second arguments have incompatible dimensions.
at line 16 of exec file called by :

exec("H:/Dr.EW/Writings/Scilab examples/derviative_2.sce");
while executing a callback

The real problem was
that I had not used
the Dot Operator in
the equation for y1

More info on plottingMore info on plotting

In the Help
Browser, Click:
Graphics Library,
and under it you find
info on e.g.

- 2D plots
- 3D plots
- axes_operations/
axes_properties

etc.

Now at least is the
time to get familiar
with the Help
Browser

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

8. Examples, Set 38. Examples, Set 3

On plotting, handles, control On plotting, handles, control
engineering, and user defined engineering, and user defined
functionsfunctions

Return to Contents

Example 3Example 3--1: More 1: More

control engineering plotscontrol engineering plots
�� Example 2Example 2--3 3 and the log scale demo were typical control engineering and the log scale demo were typical control engineering

tasks. tasks. Recall also the pages on polynomials in Recall also the pages on polynomials in Chapter 3Chapter 3
�� Here weHere we’’ll look at examples with Bode and ll look at examples with Bode and NyquistNyquist plots, Nichols plots, Nichols

chart (Blackchart (Black’’s diagram), and an Evans root locus plots diagram), and an Evans root locus plot
�� The first cases use the secondThe first cases use the second--order transfer functions order transfer functions

�� The Evans root locus is plotted forThe Evans root locus is plotted for

G2(s) = *
s2 + 20s + 100

s2 + 6s + 100

s2 + 3s + 220

s2 + 25s + 225

5 + s

2000s2 + 200s3 + 25s4 + s5
G4(s) = 352 *

Ex 3Ex 3--1:1:

scriptscript

// control_eng.sce

// Plot Bode, Nyquist, Nichols & Black's, /
// and Evans for defined equations /

clear,clc,clf;
// Definition of systems:
//-------------------------------
s = poly(0,'s'); // Polynomial seed
Gain1 = syslin('c',(s^2+20*s+100)/(s^2+6*s+100));
Gain2 = Gain1*syslin('c',(s^2+3*s+220)/(s^2+25*s+225));
Gain3 = poly(-5,'s')/poly([0,0,2000,200,25,1],'s','c');
Gain4 = syslin('c',352*Gain3);

// Bode plot:
//---------------
subplot(221)
gainplot([Gain2;Gain1],0.01,100) // Magnitude plot

// Nyquist plot:
//-------------------
subplot(222)
nyquist([Gain2;Gain1]) // Plot with Re and Im axes

// Nichols chart (Black's diagram + iso-plots):
//---
subplot(223)
black([Gain2;Gain1],0.01,100,[‘Gain2';‘Gain1'])
chart([-8 -6 -4],[20 50 80],list(1,0,5))

// Evans root locus:
//-------------------------
subplot(224)
evans(Gain4,100) // Evans root locus for sys4

�� The first two gain equations The first two gain equations
are given as ordinary are given as ordinary
polynomial expressionspolynomial expressions

�� The third gain equation, to The third gain equation, to
be used in plotting Evans be used in plotting Evans
root loci, is defined through root loci, is defined through
its its rootsroots

�� The Bode plot is only for the The Bode plot is only for the
gain, later the alternative gain, later the alternative
bode()bode() will be demonstratedwill be demonstrated

�� Scilab talks about BlackScilab talks about Black’’s s
diagram rather than Nichols diagram rather than Nichols
chart. Example 3chart. Example 3--2 highlights 2 highlights
the difference between the the difference between the
twotwo

Ex 3Ex 3--1: plot1: plot

The plot has not
been edited,
everything shown
is the result of the
script. Note the
red iso-curves on
the Bode-Nichols
subplot

The next slide
looks at how
alternative Bode
plot commands
operate

// bode_comparison.sce

// Compare the how the bode() and gainplot() /
// functions operate in Example 7 /

clear,clc,clf;
s = poly(0,'s'); // Polynomial seed
Gain1 = syslin('c',(s^2+20*s+100)/(s^2+6*s+100));
Gain2 = Gain1*syslin('c',(s^2+3*s+220)/(s^2+25*s+225));

// Plot with the bode() function:
//--
subplot(121)
bode([Gain2;Gain1],0.01,100)
legend(‘Gain1',‘Gain2')
xtitle('PLOTTED WITH bode()')

// Plot with the gainplot() function:
//---
subplot(122)
gainplot([Gain2;Gain1],0.01,100)
legend(‘Gain1',‘Gain2')
xtitle('PLOTTED WITH gainplot()')

Ex 3Ex 3--1: alternative Bode 1: alternative Bode

plot functionsplot functions
This example demonstrates
the bode() and gainplot()
functions when operating
on the earlier Gain1 and
Gain2 expressions. bode()
plots also the phase

Ex 3Ex 3--1: comments1: comments

�� The script was modified after being copied from the Scilab GroupThe script was modified after being copied from the Scilab Group
UserUser’’s Manual and pasted into Editor. When copys Manual and pasted into Editor. When copy--pasting, Editor pasting, Editor
tends to interpret citation marks (tends to interpret citation marks (‘‘cc’’,,‘‘ss’’, etc.) wrongly and they have , etc.) wrongly and they have
to be corrected manuallyto be corrected manually

�� Scilab is strict with the arguments for polynomial expressions. Scilab is strict with the arguments for polynomial expressions. If, for If, for
instance, the instance, the ‘‘cc’’ is left out from the expression is left out from the expression
poly([0,0,2000,200,25,1],poly([0,0,2000,200,25,1],’’ss’’,,’’cc’’), it will be translated into 10000000s), it will be translated into 10000000s2 2

-- 10455000s10455000s3 3 + 455225s+ 455225s4 4 -- 2226s2226s5 5 + s+ s66. . Be careful!Be careful!

�� There is an advantage in using selfThere is an advantage in using self--documenting expressions, here documenting expressions, here
exemplified by naming the polynomials Gain1, Gain2, etc.exemplified by naming the polynomials Gain1, Gain2, etc.

�� The separate Bode plot demo showed that the The separate Bode plot demo showed that the bode()bode() function has function has
an advantage in providing also the phase of the system of interean advantage in providing also the phase of the system of interestst

�� The difference between BlackThe difference between Black’’s diagram and Nichols chart will be s diagram and Nichols chart will be
demonstrated in Example 3demonstrated in Example 3--22

Example 3Example 3--2: Black vs. 2: Black vs.

NicholsNichols

This example, adapted from Povy’s
tutorial, p. 78, shows what the
chart() command adds to Black’s
diagram

The first vector argument of
chart() defines the iso-gain curves
to be plotted

The second argument defines iso-
phase curves

list() defines plotting properties
(the last argument does not have
any effect)

Check with Help for details

// black_nichols.sce

// Demonstration of black() and /
// chart() functions /

clear,clc,clf;

s = %s;
Gain = (2+3*s+s^2)/(1+3*s+2.5*s^2+s^3);
system = syslin('c',Gain);

black(system,.01,100) // Plot Black's diagram
chart([-8,-2,.5,3,6,12],[5,25,60,120],list(1,1,2,5))

// chart() adds iso-graphs

History Quiz:Did Nichols base his
chart on work by Black or by Hall?

Ex 3Ex 3--2: plots2: plots

black(sl,.01,100)

black(sl,.01,100)
chart ([-8,-2,.5,3,6,12],[5,25,60,120],list(1,1,2,5))

Example 3Example 3--3: an RC 3: an RC

circuitcircuit

�� LetLet’’s do a Bode plot using just s do a Bode plot using just
basic circuit theory and no basic circuit theory and no
Laplace rubbishLaplace rubbish

�� The case is the simple RC The case is the simple RC
circuit to the right (firstcircuit to the right (first--order order
lowlow--pass filter)pass filter)

�� The task is to plot both the The task is to plot both the
magnitude (gain) and phasemagnitude (gain) and phase

�� The The bode()bode() function is not function is not
suitable for this case, instead suitable for this case, instead
wewe’’ll used ll used plot2d()plot2d() and define and define
it separately for magnitude it separately for magnitude
and phaseand phase

G = =
1 + i2 π f RC

1uout

uin

Ω

// bode_RC.sce

// Bode diagram for an RC circuit /
// (first-order low-pass filter) /

clear,clc,clf;

R = 1e+3; // Resistance in ohm
C = 1e-7; // Capacitance in farad
freq = logspace(1,6,60); // Frequency range, logarithmic
G = 1 ./ (1 + %i*2*%pi*freq*R*C); // Transfer function
G_dB = 20*log10(abs(G)); // Logarithmic scale
phase = ((atan(imag(G),real(G)))/(%pi))*180; // Phase

subplot(211); // Amplitude plot
plot2d(freq,G_dB,logflag='ln',style=5)
xgrid(2) // Blue grid
xtitle('Amplitude','Frequency (Hz)','Gain (dB)')

subplot(212) // Phase plot
plot2d(freq,phase,logflag='ln',style=2)
xgrid(3) // Green grid
xtitle('Phase','Frequency (Hz)','Phase (deg)')

Ex 3Ex 3--3: script3: script

�� The The logspace(1,6,60)logspace(1,6,60)
command means starting command means starting
point 10point 1011, end point 10, end point 1066, ,
in 60 steps and in 60 steps and
logarithmic scalelogarithmic scale

�� Trigonometric phase Trigonometric phase
definition and conversion definition and conversion
to degreesto degrees

�� The The logflaglogflag = = ‘‘lnln’’
argument defines a argument defines a
logarithmic xlogarithmic x--scale and scale and
linear (normal) ylinear (normal) y--scalescale

�� Different styles and Different styles and
xgridxgrid()() arguments have arguments have
been used to been used to
demonstrate their effectdemonstrate their effect

Ex 3Ex 3--3: plot3: plot

Note that the x-
axis label is
missing for the
phase plot,
although it was
specified. Scilab
does not repeat it
since it is the
same as the top
one. Change the
subplot
declarations to
(121) and (122)
and the x-axis
label is given for
both parts

Example 3Example 3--4: linear 4: linear

antenna arrayantenna array

Radiating
elements

Phase
shifters

......

...... d

Phase front

θ

α2α3αnαN

n 123N

α1

Amplitude
weights

(n-1)·d·sinφ
θ

En

w1
wn w2w3

wN

| AF | =
·sin θ]sin [Nπ ()

λ
d

·sin θ]sin [π ()
λ
d

The task is to investigate the
behavior of the Array Factor,
AF (also know as field
intensity pattern), of a linear
antenna array with N = 10
isotropic radiating elements,
when the main beam is
scanned at θo = 60º and
element spacing d = 0.45
and 0.55 wavelengths

(For a discussion on antenna
arrays, see Brookner, E.
(ed): Practical Phased
Array Antenna Systems,
Artech House, 1991)

Ex 3Ex 3--4: beam scanning4: beam scanning

The previous expression for
AF is valid when the beam is
normal to the array axis
(broadside case). If the
beam is deflected, the scan
angle θo must be included in
the equation

(In a more complete
simulation we must also
include element factors,
tapering, and mutual
coupling between the array
elements)

| AF | =
·(sin θ - sin θo)]sin [Nπ ()

λ
d

·(sin θ - sin θo)]sin [π ()λ
d

Scan angle

Scan angle

Ex 3Ex 3--4: 4:

scriptscript

This script is for the
previous expression for
AF, but normalized
(divided by N) to keep
the main beam value at
unity. The phase
functions have been
defined separately in
order to shorten the
expression for AF_norm

The array factor is
plotted both in linear and
polar presentation

// array_factor.sce

// ---/
// Plots the array factor of a linear antenna array with N elemnts, /
// spaced at d wavelengths, and main beam scanned at +60 degrees /
// ---/

clear,clc,clf;

// Variables:
N = 10; // Number of radiating elements
d1 = 0.45; // Element spacing in wavelengths
d2 = 0.55; // Ditto
theta = [-%pi/2:0.01:%pi/2]'; // Half space, +/-90 deg
theta_z = %pi/3; // Scan angle

// Define array factors:
f_phase1 = %pi*d1*(sin(theta)-sin(theta_z)); // Phase function
f_phase2 = %pi*d2*(sin(theta)-sin(theta_z)); // Ditto
AF_norm1 = abs((sin(N*f_phase1)./sin(f_phase1))/N);

// Normalized array factor (d=0.45)
AF_norm2 = abs((sin(N*f_phase2)./sin(f_phase2))/N);

// Normalized array factor (d=0.55)

// Plot functions:
subplot(211 // Linear plot (d=0.45,0.55)
plot2d(theta,[AF_norm1,AF_norm2], style=[2,5],...

leg="d = 0.55@d = 0.45")
xtitle("ANTENNA ARRAY FACTOR, N = 10, Beam angle = 60 deg",...

"Theta (radians)","Normalized amplitude")

subplot(212) // Polar diagram (d=0.55)
polarplot(theta,AF_norm2, style=5)
xtitle('POLAR DIAGRAM FOR d = 0.55:')

Ex 3Ex 3--4: plot4: plot

The plot verifies the
common rule of thumb,
according to which the
array element spacing
must satisfy the
condition d < λ/2 or
detrimental grating
lobes will show up

Note that there is a
mirror image in the
other half space, only
the ±90º case has
been plotted

Main lobeGrating lobe

Main lobe

Grating lobe

Ex 3Ex 3--4: modified plot4: modified plot

�� This case shows d=0.45 This case shows d=0.45
only. Other changes are:only. Other changes are:
–– Element spacing d = Element spacing d =

0.750.75
–– Element number N = 30Element number N = 30
–– Scan angle = Scan angle = --3030ºº

�� Scilab 5.1.1 tended under Scilab 5.1.1 tended under
conditions like these to conditions like these to
present only a part of the present only a part of the
polar plot, but at the polar plot, but at the
same time increase the same time increase the
size and let the polar plot size and let the polar plot
overflowed the linear plot overflowed the linear plot
(which wasn(which wasn’’t bad). This t bad). This
seems to have changedseems to have changed

Main lobe Grating lobe

// sinc_colormap.sce

// Define and plot 3D sic funtion, graphic /
// adjust properties with handles /

clear,clc,clf;
x=linspace(-10,10,50); // Linear space of x
y=x; // Ditto for y

// **** SUBROUTINE sincf(): **** /
//--
function [z]=sincf(x, y)

r=sqrt(x.^2+y.^2)+%eps; // Auxiliary computation
z=sin(r)./r; // Amplitude

endfunction

// **** MAIN, Compute sinc function: **** /
//--
w=feval(x,y,sincf); // Evaluate with SUBROUTINE sincf()

// Plotting & plot control:
//--------------------------------
drawlater(); // Suppress plotting until ready

plot3d(x,y,w); // (Suppressed) plot function
f=gcf(); // Get Figure handle
f.color_map = coppercolormap(32); // Set color table
h=gca(); // Get Axes handles
h.rotation_angles=[87,42]; // Set angle of observation
h.children.color_flag=1; // Use current color table
xtitle('sinc()','X','Y','Z'); // Title & legend

drawnow(); // Plot now

Example 3Example 3--5: 5:

3D 3D sincsinc

This example is adapted from
Kubitzki, Einführung in Scilab,
pp. 41-42, and can be
compared with the earlier one
for plotting a 3D sinc function

The script introduces the use
of colormaps to identify
graphics colors. The argument
of coppercolormaps() defines
the number of colors in the
map; 32 is typical

Note that color_map works
on the Figure level (f=gcf())

Here we use the pair
drawlater() and drawnow()
to control the plot process

Ex 3Ex 3--5: 3D 5: 3D sincsinc, plots & , plots &

commentscomments
Scilab has numerous colormap alternatives
that allow the color of a 3D plot to be
changed, e.g. the ones shown here. Check
Help/Color management/colormap for
more alternatives

coppercolormap()

hotcolormap()
hsvcolormap()

Example 3Example 3--6: 6: LissajousLissajous

figures, taskfigures, task

�� The task is to write a script that generates The task is to write a script that generates LissajousLissajous figures and to figures and to
edit the figure with handlesedit the figure with handles

�� LissajousLissajous figures are familiar to all who have worked with an figures are familiar to all who have worked with an
oscilloscope in high school physics laboscilloscope in high school physics lab

�� Mathematically Mathematically LissajousLissajous figures are the graph of a system of figures are the graph of a system of
parametric equations of the type:parametric equations of the type:

x = Ax = A ·· (sin((sin(ωωt) + t) + φφ))
y = By = B··sin(sin(ωωt)t)

�� We shall plot two figures in one window, the combination ofWe shall plot two figures in one window, the combination of

sin(x) & cos(3x) sin(x) & cos(3x) andand
sin(1.5x) & 0.5*cos(1.5x)sin(1.5x) & 0.5*cos(1.5x)

�� For comparison we first do a basic plot with For comparison we first do a basic plot with plot2d()plot2d() and then modify and then modify
the figure with handlesthe figure with handles

Ex 3Ex 3--6: 6: LissajousLissajous figures, figures,

script 1script 1

// handles_demo2-1.sce
// Two Lissajous figures, sin(t) & cos(3t) and /
// sin(1.5t) & 0.5*cos(1.5t), with plot definitions /
// given by arguments of the plot2d() function /

clear,clc,clf;

// Plot Lissajous figures:
//-------------------------------
t=linspace(0,6,100)';
sines = [sin(t) sin(1.5*t)];
cosines = [cos(3*t) 0.5*cos(1.5*t)];
plot2d(sines, cosines, [2,5], ...

leg='sin(t), cos(3t)@sin(1.5t), 0.5*cos(1.5t)',...
nax=[1,9,1,9], rect=[-1.1,-1.1,1.1,1.1])

�� Sine and cosine functions are Sine and cosine functions are
grouped into matricesgrouped into matrices

�� The The plot2d()plot2d() argument argument
[2,5][2,5] defines graph colorsdefines graph colors

�� The argument The argument legleg defines defines
the legendthe legend

�� The argument The argument naxnax defines defines
axes divisionsaxes divisions

�� The argument The argument rectrect defines defines
the extension of x and y axesthe extension of x and y axes

Ex 3Ex 3--6: 6: LissajousLissajous figures, figures,

plot 1plot 1

The figure defined by sin(t),
cos(3t) has not quite finished a
full loop (its reach is defined by
the argument 6 in linspace())

The second figure, sin(1.5t),
0.5*cos(1.5t), is already on its
second loop. The ellipse
becomes a circle if we change
the cosine amplitude to 1

Pay attention to the fact that
plot2d() combines sines and
cosines arguments element-
by-element

That was the basic thing, how
do we improve it?

Ex 3Ex 3--6: 6: LissajousLissajous figures, figures,

plot 2plot 2

This is the plot that has been
modified using handles.* The
script is presented on the
next four slides

Major modifications are:

- Both Lissajous figures are
arrow style, one line is dash-
dotted

- Title and axes labels have
been added & edited

- Background color has been
added

- The legend box has been put
in the lower right-hand corner,
text edited and box color
added

- A grid was added & edited *) Ok, I have done some additions as well.

// handles_demo2-3.sce

// Two Lissajous figures, sin(t) & cos(3t) and /
// sin(1.5t) & 0.5*cos(1.5t), with plot edited /
// using handles /

clear,clc,clf;

// Plot Lissajous figures:
//-------------------------------
x=linspace(0,6,40)'; // 40 steps to allow arrows
sines = [sin(x) sin(1.5*x)]; // First figure
cosines = [cos(3*x) 0.5*cos(1.5*x)]; // Second figure
plot2d(sines,cosines,rect=[-1.1,-1.1,1.1,1.1])

// Add background color:
//--------------------------------
f=gcf(); // Get Figure handle

f.background=color('grey'); // Grey background color

Ex 3Ex 3--6: 6: LissajousLissajous figures, figures,

script 2 (1/4)script 2 (1/4)

�� # of # of linspacelinspace()() steps is steps is
lowered to 40 to better lowered to 40 to better
show the arrows that are show the arrows that are
used belowused below

�� The body of The body of plot2d()plot2d() is is
retained, the reminder will retained, the reminder will
be done with handlesbe done with handles

�� The figure handle is called The figure handle is called
by by gcfgcf()(), after which the , after which the
figure background color figure background color
can be defined (addition can be defined (addition
to Script 1)to Script 1)

// Edit Lissajous figures:
//-------------------------------
a=gca(); // Get Axes handle
p1=a.children; // sin(1.5x), 0.5*cos(1.5x)

p1.children(1).polyline_style=4; // Arrow mode
p1.children(1).foreground=2; // Change color to blue
p1.children(1).arrow_size_factor=2; // Line thickness

p2=a.children; // sin(x), cos(3x)
p2.children(2).line_style=4; // Dash-dot line
p2.children(2).foreground=5; // Change color to red
p2.children(2).polyline_style=4; // Arrow mode
p2.children(2).arrow_size_factor=2; // Line thickenss

// Add & edit title & labels:
//-----------------------------------
xtitle('Two Lissajous figures', 'x-axis', 'y-axis');

a.title.font_style=8; // Font: Helvetica bold
a.title.font_size=3; // Increase title font size
a.x_label.font_style=7; // Font: Helvetica italic
a.x_label.font_size=2; // Increase x-label font
a.y_label.font_style=7; // Font: Helvetica italic
a.y_label.font_size=2; // Increase y-label font

Ex 3Ex 3--6: 6: LissajousLissajous figures, figures,

script 2 (2/4)script 2 (2/4)

�� Call Axes handle with Call Axes handle with gcagca()(), ,
then edit the two then edit the two LissajousLissajous
figures figures

�� p1 & p2 are Compounds, p1 & p2 are Compounds,
children to Axeschildren to Axes

�� The graphs are The graphs are PolylinesPolylines and and
grandchildren to Axes grandchildren to Axes

�� Title and axes labels must first Title and axes labels must first
be added, after which they be added, after which they
can be editedcan be edited

�� Recall that Title is a child to Recall that Title is a child to
AxesAxes

�� Check with Check with Help/ Help/
graphics_fontsgraphics_fonts for details on for details on
fontsfonts

// Edit ticks & marks (labels):
//--------------------------------------
a.x_ticks = tlist(['ticks','locations','labels'],...

[-1.1,-.825,-.55,-.275,0,.275,.55,.827,1.1],...
['-1.1','-.825','-.55','-.275','0','.275','.55',...
'.825','1.1']);

a.y_ticks = tlist(['ticks','locations','labels'],...
[-1.1,-.825,-.55,-.275,0,.275,.55,.827,1.1],...
['-1.1','-.825','-.55','-.275','0','.275','.55',...
'.825','1.1']);

a.labels_font_color=13; // Change label color
a.labels_font_size=2; // Increase label size

// Add & edit legend:
//---------------------------
legend(['sin(x), cos(3x)'; 'sin(1.5x), 0.5*cos(1.5x)'], 4);
leg=a.children(1); // Get legend handle

leg.font_style=2; // Font: Times
leg.font_size=2; // Increase legend font size
leg.font_color=1; // Font color black
leg.background=7; // Yellow legend box fill

Ex 3Ex 3--6: 6: LissajousLissajous figures, figures,

script 2 (3/4)script 2 (3/4)

�� xx-- and yand y--axis ticks & marks axis ticks & marks
(legends) are added(legends) are added

�� Axes label font color & size Axes label font color & size
are redefinedare redefined

�� Note that Ticks and Note that Ticks and
Legends (marks) are Legends (marks) are
children to Axes, similar to children to Axes, similar to
LabelsLabels

�� A legend is added & editedA legend is added & edited

Ex 3Ex 3--6: 6: LissajousLissajous figures, figures,

script 2 (4/4)script 2 (4/4)

�� To finish, the grid is turned To finish, the grid is turned ““onon””
and line colors editedand line colors edited

�� Scilab does not have an Scilab does not have an
equivalent for equivalent for MatlabMatlab’’ss ““grid on,grid on,””
this is a way of circumventing this is a way of circumventing
the problemthe problem

And a final check on
the next slide…

// Add & edit grid:
//----------------------
set(gca(),'grid',[1 1]); // Matlab's "grid on"

a.grid(1)=color('green'); // Vertical line color
a.grid(2)=color('green'); // Horizontal line color

There were huge problems when I first tried to include the gce(), get
current Entity, command in the script. The background color did not come
up after Scilab was reloaded, I could not define ticks, etc.

Lessons learned: Be sure that you now what you do with gce()!

Ex 3Ex 3--6: 6: LissajousLissajous figures, figures,

checkcheck
After all these modifications, let’s make sure that we can recall the
basic plot by adding the following lines at the end of the script:

// Check default settings:
//--------------------------------
xdel(); // Delete Graphics Window
sda(); // Reset default Axes
plot2d(sines,cosines,rect=[-1.1,-1.1,1.1,1.1])

When we run the script,
Scilab briefly flashes the
modified plot,* deletes it, and
puts up this window instead.
The basic Lissajous figures
seem to be ok

*) You can use the function pair drawlater() and drawnow() to avoid the
flashing, as was done in Ex 3-5.

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

9. Converting 9. Converting MatlabMatlab

filesfiles

The embedded The embedded MatlabMatlab--toto--ScilabScilab
translator seems to work and translator seems to work and
manual conversion is an optionmanual conversion is an option

Return to Contents

Tips on Tips on MatlabMatlab to Scilab to Scilab

conversionconversion

About halfway down the
Help Browser (which is
not in any logical order)
you find Matlab to Scilab
Conversion Tips. You
will see a long list of the
m2sci_... type of
functions

Click on the first
subheading, Matlab-
Scilab equivalents, and
you get a list of Matlab
functions and their Scilab
equivalents (missing ones
are not included, like
text() and xlim()
mentioned below)

Using the integrated Using the integrated MatlabMatlab--

toto--ScilabScilab translatortranslator

�� Scilab can convert Scilab can convert MatlabMatlab’’ss .m files to ..m files to .scisci files, although we should files, although we should
not expect the conversion to be fully successful every time. Thenot expect the conversion to be fully successful every time. The
translated script may have to be modified manuallytranslated script may have to be modified manually

�� We start by opening the translator: *We start by opening the translator: *

On the Console, Click:
Applications\Matlab to
Scilab translator

What happens next you can se
on the following slide

*) It used to be possible to import Matlab files directly, but this option does not
exist any more.

MM--toto--S translator: the S translator: the

processprocess

The conversion tool opens

1. Click: (File name) Browse
and identify the file that you
want to translate

2. Click: (Directory name)
Browse to point out where to
put the translated script (and
associated products*)

3. Click: Convert

*) The conversion produces
two text documents and two
.sci scripts

MM--toto--S translator: S translator:

messages on the Consolemessages on the Console

Scilab presents a
list of translation
conditions and
also warnings of
possible errors
on the Console.
The warnings
are repeated as
comments in the
script (and on
one of the text
documents)

Next, open the
translated script
in the Editor

MM--toto--S translator: script S translator: script

(1/4)(1/4)

// Display mode
mode(0);

// Display warning for floating point exception
ieee(1);

// Monopulse Antenna Pattern
// --------------------------------------

clear,clc,// !! L.4: All children will be deleted, no
HandleVisibility property in Scilab graphics.
clf;

// Normalized Aperture Width
na = 4;

// Sampling Frequeny=Number elements per norm aperture
fs = 8;

Statement & warning
added by Scilab

Here comes the
second warning. The
Matlab command was
clear,clc,clf;. May
be of importance if
the script is edited
with handles. In such
a case, try to create
a new script by copy-
pasting

This is the script that the translator delivers. It contains comments that
may or may not be of importance:

MM--toto--S translator: script S translator: script

(2/4)(2/4)

// Norm aperture with N elements
N = fs*na;
xna = na*(-1/2:1/(N-1):1/2);

// Illumination Function

wxna(1,1:N/2) = ones(1,N/2);
wxna = mtlb_i(wxna,N/2+1:N,-ones(1,N/2));
wxnb(1,1:N/2) = ones(1,N/2);
wxnb = mtlb_i(wxnb,N/2+1:N,ones(1,N/2));

// Fill with M/2 zeros front and back

M = 1024;
xna = na*(-1/2:1/N+M-1:1/2);
wxna = [zeros(1,M/2),wxna,zeros(1,M/2)];
wxnb = [zeros(1,M/2),wxnb,zeros(1,M/2)];

// Beam Functions from -fs/2 to fs/2 in sine space

Nfft = max(size(wxna));
Esine = mtlb_fft(wxna,Nfft);
Esine = fftshift(Esine);

Everything runs smoothly
here

The code is expected to
present the sum and
difference patterns for a
monopulse antenna
(tracking radar, etc.)

MM--toto--S translator: script S translator: script

(3/4)(3/4)

Esum = mtlb_fft(wxnb);
Esum = fftshift(Esum);

// Azimuth vector

sinfi = ((fs/4)*(-Nfft/2:Nfft/2-1))/Nfft;

// Azimuth vector in radians

// !! L.45: If sinfi is outside [-1,1]
// !! complex part of output of asin(sinfi) will be the
opposite of Matlab one.
fi = asin(sinfi);

// Beam gain functions

Gfi = (Esine .*conj(Esine))/Nfft;
Gfs = (Esum .*conj(Esum))/Nfft;

Gfi = mtlb_i(Gfi,1:Nfft/2,sqrt(Gfi(1:Nfft/2)));
Gfi = mtlb_i(Gfi,Nfft/2+1:Nfft,-sqrt(Gfi(Nfft/2+1:Nfft)));
Gfs = sqrt(Gfs);

Here comes more
warnings. May relate
to a rounding error

MM--toto--S translator: script S translator: script

(4/4)(4/4)

// Plot Monopulse Antenna Pattern

plot(fi,Gfi,fi,Gfs);mtlb_grid;
set(gca(),"data_bounds",matrix([-0.25,0.25,-0.8,1],2,-1));
ylabel("Amplitude");
xlabel("Angle - radians");
title("Monopulse Antenna Patterns");
// !! L.63: Matlab function text not yet converted,
original calling sequence used.
text(0.04,0.8,"Sum Pattern");
// !! L.64: Matlab function text not yet converted,
original calling sequence used.
text(-0.22,0.6,"Difference Pattern");

Note that title() is an
alternative to xtitle()

Here come the last
warnings. The next
slide shows what
they mean

Well, let’s see how
Scilab reacts by
executing the script...

MM--toto--S translator: plotS translator: plot

Yeees, it comes,
labels and all!

But the legends are
missing, which
means that Scilab
cannot cope with
Matlab’s text()
function

MM--toto--S translator: S translator:

commentscomments

�� Based on this example one could say that the embedded Based on this example one could say that the embedded MatlabMatlab--toto--
ScilabScilab translator is adequate translator is adequate

�� A legend has to be added manually to compensate for the missing A legend has to be added manually to compensate for the missing
text()text() information*information*

�� The example demonstrates partly good programming practice by The example demonstrates partly good programming practice by
declaring each logical entitydeclaring each logical entity. However, informative explanations . However, informative explanations
could be added could be added

�� Another improvement is to use Another improvement is to use expressive variable namesexpressive variable names. Why not . Why not
talk about talk about sampl_freqsampl_freq instead of instead of fsfs, and what does , and what does wxnawxna()() stand stand
for? for?

�� Help Help sheds no light over the meaning of the second .sheds no light over the meaning of the second .scisci files that the files that the
conversion producesconversion produces

*) A paper by Sharma & *) A paper by Sharma & GobbertGobbert(2010) reports that the translator cannot (2010) reports that the translator cannot
cope with cope with MatlabMatlab’’ ss xlimxlim()() function. In their case the function. In their case the plot()plot() function had to function had to
be manually changed to be manually changed to plot2d()plot2d() to correct the problem.to correct the problem.

Manual conversion (1/6):Manual conversion (1/6):

Case #1, scriptCase #1, script
% beating sinusoidal tones
%
t = linspace(-1e-2,1e-2,1001);
x = cos(2*pi*1500*t) + cos(2*pi*1300*t);
m = 2*cos(2*pi*100*t);
plot(t, m, ’b:’, t, -m, ’b:’, t, x, ’k’),...

axis([-0.01 0.01 -2.4 2.4]),...
title(’Beating between tones’),...
xlabel(’Time (s)’),...
ylabel(’Amplitude’)

�� To the right is a To the right is a MatlabMatlab code code
(top) and its Scilab equivalent (top) and its Scilab equivalent
(bottom). The way I did it:(bottom). The way I did it:

�� Checked visually for differences:Checked visually for differences:
–– Comments: % Comments: % �� // //
–– BuiltBuilt--in functions: pi in functions: pi �� %pi %pi
–– Plot commands are split up on Plot commands are split up on

multiple rows. Indents are not multiple rows. Indents are not
necessary, but a visual helpnecessary, but a visual help

�� Changed what I could, the run Changed what I could, the run
the script and let Scilabthe script and let Scilab’’s s
debugger yell about the restdebugger yell about the rest

�� Checked frequently with Checked frequently with Help Help
(particularly(particularly MatlabMatlab--ScilabScilab
equivalentsequivalents)) to understand the to understand the
error messages on the Consoleerror messages on the Console

// M-to-S_1-modulation.sce

// beating sinusoidal tones /

cear,clc,clf;
t = linspace(-1e-2,1e-2,1001);
x = cos(2*%pi*1500*t) + cos(2*%pi*1300*t);
m = 2*cos(2*%pi*100*t);
plot(t, x.*m, rect = [-0.01 0.01 -2.4 2.4])

title('Beating between tones')
xlabel('Time (s)')
ylabel('Amplitude')

Manual conversion (2/6):Manual conversion (2/6):

Case #1, plotCase #1, plot

�� There were some problems There were some problems
with this conversion:with this conversion:
–– I split up I split up MatlabMatlab’’ss long long

plot()plot() command, but the command, but the
abbreviated form did not abbreviated form did not
work in Scilabwork in Scilab

–– First I changed First I changed MatlabMatlab’’ss
axis()axis() to to rectrect()(),, then then
swapped the preceding swapped the preceding
argument part for x.*m. argument part for x.*m.
Now Now plot()plot() workedworked

–– The label commands gave The label commands gave
problems. The reason problems. The reason
waswas——againagain——that I had that I had
copied the copied the MatlabMatlab code code
and the and the quotation marksquotation marks
were pasted incorrectlywere pasted incorrectly

Manual conversion (3/6):Manual conversion (3/6):

Case #2, script & plotCase #2, script & plot
�� The The pie()pie() function has not been discussed before, but below is a function has not been discussed before, but below is a

short short MatlabMatlab script that draws a pie graph*script that draws a pie graph*
�� The The pie()pie() function also exists in Scilab, the difference is that Scilab function also exists in Scilab, the difference is that Scilab

does not support does not support MatlabMatlab’’ss pielabelpielabel()() functionfunction

revenues = [31 36 18 8 7];
h = pie(revenues);
pielabel(h,{'Income Tax: ';'Sales Tax: ';'Borrowing: ';…

'Corporate Taxes: ';'Misc: '});

// M-to-S_2-pie.sce

// Draw a pie graph with labels /

clear,clc,clf;
revenues = [31 36 18 8 7];
pie(revenues,['Income Tax';'Sales Tax';'Borrowing';…

'Corporate Taxes';'Misc']);

*) A more general sector chart
will be presented in Example 6-4

Manual conversion (4/6):Manual conversion (4/6):

Case #3, script & plotCase #3, script & plot
�� As a last case, letAs a last case, let’’s look at a shifted s look at a shifted sincsinc functionfunction
�� In this case the problem is that In this case the problem is that polardbpolardb()() is an informal creation is an informal creation

by by MatlabMatlab users which Scilab does not supportusers which Scilab does not support

x = -(5*2*pi):.1:(5*2*pi);
th = linspace(-pi,pi,length(x));
rho=((1+sin(x)./x));
polardb(th,rho)

Similar, but not the same as the
Matlab plot if radial units are in dB

// M-to-S_3polarplot.sce

// Polar plot of 1+sin(x)/x /

clear,clc,clf;
x = -(5*2*%pi):.1:(5*2*%pi);
th = linspace(-%pi,%pi,length(x));
rho = 1+sin(x)./x;
polarplot(th,rho)

Manual conversion (5/6):Manual conversion (5/6):

Case #3, discussionCase #3, discussion
�� The polar plot with radial The polar plot with radial

units in dB looks rather units in dB looks rather
““counterintuitive,counterintuitive,”” since since
its its sidelobessidelobes appear to appear to
be pointing in the wrong be pointing in the wrong
directiondirection

// M-to-S_3polarplot.sce

// Polar plot of 1+sin(x)/x /

clear,clc,clf;
x = -(5*2*%pi):.1:(5*2*%pi);
th = linspace(-%pi,%pi,length(x));
rho = 10*log10((1+sin(x)./x));
subplot(211);
plot2d(th,rho)
subplot(212);
polarplot(th,rho)

Linear plot

Polar plot

Manual conversion (6/6):Manual conversion (6/6):

discussion & hintsdiscussion & hints

�� Manual conversion of Manual conversion of MatlabMatlab codes to Scilab scripts is possible, there codes to Scilab scripts is possible, there
are users who claim to do it regularly are users who claim to do it regularly

� Scilab for Matlab Users –tutorials and Scilab discussion forums can
help in understanding the differences

�� Some Some MatlabMatlab functions simply do not exist in Scilab (and vice versa). functions simply do not exist in Scilab (and vice versa).
Examples are Examples are axis()axis(),, compass()compass(), , feather()feather(), , fill()fill(), , narginnargin()(), , polar()polar(), ,
quad()quad(), , quiver()quiver(), , stem()stem(), , stairs()stairs(),, and and waterfall()waterfall()

�� Sometimes alternative Scilab commands exist (e.g., ScilabSometimes alternative Scilab commands exist (e.g., Scilab’’s s
plot2d2()plot2d2() can compensate for can compensate for MatlabMatlab’’ss stairs()stairs()), sometimes not. If), sometimes not. If
not, the script may have to be rewrittennot, the script may have to be rewritten

�� ScilabScilab’’ss useruser--defined functions must be loaded with defined functions must be loaded with getfgetf()(), while , while
MatlabMatlab has no separate load functionhas no separate load function

�� MatlabMatlab’’ss run run data.mdata.m should be traded for should be traded for exec(exec(‘‘data.scidata.sci’’)) in in ScilabScilab
�� One more case of manual conversion will be presented in Example One more case of manual conversion will be presented in Example 66--

5 (Chapter 19)5 (Chapter 19)

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

10. Subroutines10. Subroutines

This discussion on subroutines is This discussion on subroutines is
a prelude to flow control that will a prelude to flow control that will
be discussed in be discussed in Chapter 11Chapter 11

Return to Contents

TerminologyTerminology

Recall from Chapter 1 that Scilab does not recognize the term
“subroutine,” which belongs to the group of varied constructs that
Scilab calls “function.” More exact, we are talking about user defined
functions (UDFs), an expression that Scilab also does not know

Regardless of official Scilab terminology, I will—when possible—use
the traditional term subroutine since it is an elegant way of pointing
to specific entities in computer programs

☺

An introductory demo An introductory demo

�� Recall Recall Example 1Example 1--33 that that
introduced the concept of user introduced the concept of user
defined functions (defined functions (UDFsUDFs))

�� Task: Write a function that Task: Write a function that
calculates the area of a triangle calculates the area of a triangle
with known side lengthswith known side lengths

�� The function is entered on The function is entered on
EditorEditor

�� It is then loaded into the It is then loaded into the
Console using the Editor Console using the Editor
command command Execute/...file Execute/...file
with echowith echo

�� The function is executed by The function is executed by
entering the function name and entering the function name and
input parameters (side lengths) input parameters (side lengths)
on the Consoleon the Console

-->function A = triangle_area(a,b,c)
-->// The function 'triangle_area' calculates the /
-->// area of a triangle with side lengths a, b, c. /
-->funcprot(0)
-->p = (a+b+c)/2 // p = half perimeter
-->A = sqrt(p*(p-a)*(p-b)*(p-c))
-->endfunction

-->triangle_area(4,5,6)
ans =

9.9215674

function A = triangle_area(a,b,c)

// The function 'triangle_area' calculates the /
// area of a triangle with side lengths a, b, c. /

funcprot(0)
p = (a+b+c)/2 // p = half perimeter
A = sqrt(p*(p-a)*(p-b)*(p-c))
endfunction

Local and global Local and global functions functions

(subroutines)(subroutines)

Local function
(local subroutine)

Call 1

Call 2

Result 1

Result 2

.....

.....

Scilab script

Global function
(global subroutine)

Call
Result

.....

.....

Scilab script 1

.....

.....

Call
Result

.....

.....

Scilab script 2

�� Local functionsLocal functions are embedded in a script and valid for it alone, are embedded in a script and valid for it alone, global global
functionsfunctions are saved separately and accessible to any scriptare saved separately and accessible to any script

Local and global Local and global variablesvariables

�� You will run into the terms local and global variables and they You will run into the terms local and global variables and they
need a short clarification:need a short clarification:
–– As with functions, Scilab has two types of function As with functions, Scilab has two types of function variablesvariables, ,

local and global:local and global:
�� Local variablesLocal variables are limited to a specific functionare limited to a specific function
�� Global variablesGlobal variables are available to, and can be altered by, all functions are available to, and can be altered by, all functions

in which the variable has been declared global in which the variable has been declared global
–– The transfer of parameters using command window (Console) The transfer of parameters using command window (Console)

variables and global variables is not too obvious. Global variables and global variables is not too obvious. Global
variables, in particular, can lead to variables, in particular, can lead to errors that are difficult to errors that are difficult to
detectdetect

–– For the reasons mentioned,For the reasons mentioned, the use of global variables should be the use of global variables should be
limited to a minimumlimited to a minimum

�� In conclusion, we consider only In conclusion, we consider only local variableslocal variables that are the that are the
default settingdefault setting in Scilab. This discussion is therefore trivialin Scilab. This discussion is therefore trivial

Subroutines, more Subroutines, more

formallyformally
�� In the general case where a subroutine has In the general case where a subroutine has severalseveral input arguments input arguments

(in_arg1,in_arg2,(in_arg1,in_arg2,……) and returns) and returns severalseveral output arguments output arguments
(out_arg1,out_arg2,(out_arg1,out_arg2,……), the structure is:), the structure is:

function function function function [out_arg1, out_arg2,...] =...
funktion_name(in_arg1, in_arg2, in_arg3,...)

out_arg1 = expression for 1st output argument;
out_arg2 = expression for 2nd output argument;
…

endfunctionendfunctionendfunctionendfunction

�� Structure borders are the Structure borders are the function function endfunctionendfunction limiterslimiters
�� Input arguments are grouped with Input arguments are grouped with bracketsbrackets (parentheses), output (parentheses), output

arguments with arguments with square bracketssquare brackets (not needed for a single output (not needed for a single output
parameter)parameter)

�� In both cases the arguments are separated by commasIn both cases the arguments are separated by commas

On output argumentsOn output arguments

The example to the
right highlights the
basic way in which
Scilab manages output
arguments of
subroutines

When you need to
influence the
management of input
and output variables,
Scilab offers the
functions argn (),
varargin (), and
varargout ()

With no output
argument defined,
the first output
argument is returned
in the ans variable

The same answer is
returned when only
one output argument
is defined

With both output
arguments defined,
the result of the
computation is
returned in full

-->function [y1,y2] = myfunc(x1,x2);
-->y1 = 3*x1;
-->y2 = 5*x2+2;
-->endfunction

-->myfunc(4,7)
ans =

12.

-->y2 = myfunc(4,7)
y2 =

12.

-->[y1,y2] = myfunc(4,7)
y2 =

37.

y1 =

12.

3x4=12

3x4=12

5x7+2=37

3x4=12

Vector argumentsVector arguments

�� This function* uses This function* uses vectors as vectors as
input and output argumentsinput and output arguments

�� The function is first definedThe function is first defined

�� After that the output After that the output
argumentsarguments——the operations to the operations to
dodo——are definedare defined

�� Next the input arguments Next the input arguments
(row vectors) are entered(row vectors) are entered

�� At the end the function is At the end the function is
executedexecuted

�� The inThe in--line function line function deffdeff()() is a is a
specialized form of local specialized form of local
functionsfunctions

*) Here I use the term “function” since the code is independent and not called
by a main program.

-->// Define local subroutine cross_product
-->function [x] = cross_product(a,b)
--> x(1) = (a(2)*b(3) - a(3)*b(2))
--> x(2) = (a(3)*b(1) - a(1)*b(3))
--> x(3) = (a(1)*b(2) - a(2)*b(1))
-->endfunction

-->// Plug in numeric values
-->a = [-2 5 8];
-->b = [7 -13 -5];

-->// Executing the subroutine
-->c_prod = cross_product(a,b)
c_prod =

79.
46.

- 9.

x(1)=5*(-5)-8*(-13)
x(2)=8*7-(-2)*(-5)
x(3)=-2*(-13)-5*7

Demo (1/2): Demo (1/2):

scriptscript

// subroutine1.sce

// Compute & plot the function y = x^2-x+1 in the /
// range [-5,5] and determine its positive root. /
// Assume we know the root lies in the range [1,2] /

clear, clc, clf;

// SUBROUTINE para():
//------------------------------
function y=para(x); // Subroutine declaration
y = x^2-x-1 // Equation (parabola))
endfunction

// MAIN script:
//-------------------
x = linspace(-5,5,100); // Range of interest
plot(x,para) // Call subroutine and plot
xgrid; // Add grid

a=1; b=2; // Search limits
while b-a > 10^(-4) // Accuracy for searching root

c = (a+b)/2; // Midpoint of limits
if para(a)*para(c)>0 then // IF (lower)*(midpoint)

// is positive
a=c; // THEN change lower limit

else
b=c; // ELSE change upper limit

end
end
disp("The root lies between "... // Output root limits

+string(a)+" and "+string(b))

Here the subroutine is
called for the first time
using the input
argument x

Here the subroutine is called
twice more, first with the
input argument a, then b

Interesting way of finding
the root location. Later we’ll
do the same using fsolv()

Task: Compute & plot a
parabola, find its
positive root

Demo (2/2): plot, Demo (2/2): plot,

printout & commentsprintout & comments
�� This demo was borrowed from This demo was borrowed from

the pamphlet the pamphlet ““Scilab pour les Scilab pour les
LycLycééeses””

�� Notice that the calling command Notice that the calling command
was abbreviated to the extent was abbreviated to the extent
possible. Instead of possible. Instead of plot(x,paraplot(x,para))
we could write:we could write:

�� Subroutines have to be declared Subroutines have to be declared
before the calling main part of before the calling main part of
the script the script

�� Later weLater we’’ll see scripts with ll see scripts with
multiple subroutines, told apart multiple subroutines, told apart
by their names. Subroutines can by their names. Subroutines can
also be nested (next slide) and also be nested (next slide) and
can call other subroutinescan call other subroutines

 The root lies between 1.617981 and 1.618042

a = para(x);
plot(x,a)

Nested subroutinesNested subroutines

�� Subroutines can be nestedSubroutines can be nested——if it is worth if it is worth
the added complexitythe added complexity

�� The example shown here computes the The example shown here computes the
equationequation

yy (x) = (sin(x) = (sin (x)+2*%pi) ^2 (x)+2*%pi) ^2 ––
sqrtsqrt (sin(sin (x)+2*%pi) + 3 ^2(x)+2*%pi) + 3 ^2

in three steps: First sin(x)+2*%pi is in three steps: First sin(x)+2*%pi is
calculated. The result is then squared and calculated. The result is then squared and
subtracted with the square root of itself. subtracted with the square root of itself.
Finally, 3^2=9 is addedFinally, 3^2=9 is added

�� Plug in the equation in a Plug in the equation in a
calculator and yes, it givescalculator and yes, it gives
the same answer. I preferthe same answer. I prefer
this old fashioned methodthis old fashioned method

-->function y = nested(x)
--> a = sin(x) + 2*%pi;
--> function y = inner(x);
--> y = x^2 -sqrt(x);
--> endfunction
--> y = inner(a) + 3^2;
-->endfunction

-->value = nested(%pi/3)
value =

57.437413

--> (sin(%pi/3)+ 2*%pi)^2 - sqrt(sin(%pi/3) + 2*%pi) + 3^2
ans =

57.437413

The The deffdeff() primitive() primitive

�� The The deffdeff()() primitive can be used to define primitive can be used to define simple functions simple functions (it (it
resembles resembles MatlabMatlab’’ss inline()inline() function) function)

�� deffdeff()() is therefore used in local subroutinesis therefore used in local subroutines
�� The syntax is:The syntax is:

deffdeff ((‘‘y = function_name(x1,x2,...)y = function_name(x1,x2,...)’’, , ‘‘y=function expressiony=function expression’’))

�� Below is the same equation computed on the Console with Below is the same equation computed on the Console with functionfunction
and and deffdeff()() alternatives: alternatives:

 -->deff('y = f(x)','y = x^2+x-1')

 -->f(2), f(-5)
 ans =

 5.
 ans =

 19.

 -->function y = g(x); y = x^2+x-1 endfunction

 -->g(2), g(-5)
 ans =

 5.
 ans =

 19.

Note the
semicolon!
(Scilab
understands
if you skip it
after the
second y
expression)

Global subroutines:Global subroutines:

window demo (1/4)window demo (1/4)
�� This demo creates a global This demo creates a global

subroutine (function) for a subroutine (function) for a
reusable graphics windowreusable graphics window

�� FirstFirst, open Scilab, open Scilab’’s s Graphics Graphics
WindowWindow (one alternative is by (one alternative is by
the command the command gcfgcf();(); on the on the
Console). The empty Graphics Console). The empty Graphics
Window pops upWindow pops up

�� NextNext, On the Graphics Window, , On the Graphics Window,
Click: Click: Edit/Figure propertiesEdit/Figure properties
to open the to open the Figure editorFigure editor (this (this
has been explained before)has been explained before)

�� ThirdThird, select a suitable , select a suitable Back Back
colorcolor (e.g. 22 for ecclesiastic (e.g. 22 for ecclesiastic
violet) and you can see the violet) and you can see the
frame on the Graphics Window frame on the Graphics Window
(the bar goes only to 32, (the bar goes only to 32, gray gray
is not an optionis not an option))

Global subroutines: Global subroutines:

window demo (2/4)window demo (2/4)

�� FourthFourth, you need to , you need to
play with the Figure play with the Figure
Editor for quite a while Editor for quite a while
to fill in all detailsto fill in all details

�� NoteNote the the Ticks...Ticks...
button on the button on the Graphics Graphics
EditorEditor. It opens a . It opens a
separate window in separate window in
which you can define & which you can define &
label grid lineslabel grid lines

�� LaterLater, when all details , when all details
match, you reach match, you reach
something like thissomething like this

�� FinallyFinally, save it with the , save it with the
help of the Graphics help of the Graphics
Window. Click: Window. Click:
File/Save...File/Save...

// reuse_function.sce

// Reusing graphics function, /
// defenitions with handle commands /

clear,clc;

// SUBROUTINE, load function:
//---
load('window_demo.scg');

// MAIN, define and plot:
//--------------------------------
x = [-4:0.01:4]; // Horizontal extension
y1 = 2*sin(x) - 2; // First equation
plot2d(x,y1, style=2); // First plot, blue

e=gce(); // Get Entity handle
e.children.thickness=5; // Polyline size

y2 = 2*cos(2*x) + 6; // Second equation
plot2d(x,y2, style=3); // Second plot, green

e=gce(); // Get Entity handle
e.children.thickness=5; // Polyline size

Global subroutines:Global subroutines:

window demo (3/4)window demo (3/4)

�� Scilab answers on the Console:Scilab answers on the Console:

�� So it is as a subroutine. I called So it is as a subroutine. I called
it it window_demo.scgwindow_demo.scg . . Note the Note the
ending ending ..scgscg. Not . Not ..scesce or or .sci.sci. .
ItIt’’s g for graphic s g for graphic

�� Then we need a main script Then we need a main script
that uses global subroutinethat uses global subroutine

�� Note that I call the Entity Note that I call the Entity
handle handle e=e=gcegce()(). It simplifies . It simplifies
compared to the path needed if compared to the path needed if
calling the Axes handle, as was calling the Axes handle, as was
done in done in Chapter 7Chapter 7

 Figure saved.

Global subroutines:Global subroutines:

window demo (4/4), plotwindow demo (4/4), plot

�� Do you have problems Do you have problems
with the plot?with the plot?

�� If yes, make sure that If yes, make sure that
you defined the you defined the
window correctlywindow correctly

�� For instance, if you do For instance, if you do
not correctly fill both not correctly fill both
sides in the sides in the Edit Axes Edit Axes
TicksTicks list there will be list there will be
some funny grid some funny grid
locationslocations

�� Make also sure that the Make also sure that the
data bounds ([data bounds ([--5,5], 5,5],
[[--10,10]) are defined in 10,10]) are defined in
the the Axes Editor/Axes Axes Editor/Axes
OptionsOptions windowwindow I typed the wrong handle call I typed the wrong handle call gcagca();(); and and

Scilab crashedScilab crashed definitely. Reboot ...definitely. Reboot ...

Comment: multiple plots Comment: multiple plots

with a single commandwith a single command
�� It is possible to plot multiple It is possible to plot multiple

graphs with a single graphs with a single
command by defining the command by defining the
function arguments as function arguments as
column vectorscolumn vectors

�� Here is the modified plot Here is the modified plot
command of the previous command of the previous
window demo, compressed window demo, compressed
toto

plot2d(x,[y1plot2d(x,[y1’’,y2,y2’’])])

�� The result is shown here. The result is shown here.
Scilab automatically picks Scilab automatically picks
different colors for the different colors for the
graphsgraphs

�� Scilab warns if the Graphics Scilab warns if the Graphics
Window is dockedWindow is docked

y1 = 2*sin(x) - 2; // First equation
y2 = 2*cos(2*x) + 6; // Second equation

plot2d(x,[y1',y2']) // Plot both
e=gce(); // Get Entity handle
e.children.thickness=5; // Polyline size

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

11. Flow control11. Flow control

Flow control (conditional Flow control (conditional
branching, programming) bring branching, programming) bring
important new structuresimportant new structures

Return to Contents

IntroductionIntroduction

�� We have now come to the line that separates boys from menWe have now come to the line that separates boys from men
�� Some examples using flow control (also known as Some examples using flow control (also known as conditional conditional

branchingbranching and and programmingprogramming) have come up in the preceding) have come up in the preceding
chapters, but the nature of conditional branch commands like chapters, but the nature of conditional branch commands like if ... if ...
then ... elsethen ... else has not been discussed*has not been discussed*

�� Flow control together with subroutines are needed for serious Flow control together with subroutines are needed for serious
practical simulationspractical simulations

�� We shall therefore take a good look at the most important aspectWe shall therefore take a good look at the most important aspects of s of
flow controlflow control

�� Note, however, that Note, however, that loop operations are slowloop operations are slow. We should aim for . We should aim for
vectorizedvectorized operationsoperations if a task requires a lot of loop iterations (there if a task requires a lot of loop iterations (there
is a brief discussion on the subject in is a brief discussion on the subject in Chapter 18Chapter 18))

*) Historical note: Konrad Zuse, the German who built the first real computer
during WW II (using over 2000 relays because he did not trust vacuum tubes),
got everything right except for conditional branches.

Flow control constructsFlow control constructs

not~

or| or /

and&

not equal to<> or ~=

greater or equal to>=

smaller or equal to<=

greater than>

smaller than<

equal to==

Logical operators:

Comparison operators:

for ... (if ... else) … end

while ... (if/then/else) ... end

if ... (elseif ... else) ... end

select ... case (... else) ... end

break ... continue

try ... catch ... end

Branch commands:*

false%f or %F

true%t or %T

Logical/Boolean constants:

The following are main constructs that you should be familiar with:

*) Rumor has it that Scilab will see select ... case renamed switch ... case
in line with Matlab.

1. 1. 1.

 3. 1.7320508 9.

 5. 2.236068 25.

 7. 2.6457513 49.

for for …… endend

�� The The for ... endfor ... end loop repeats a group of statements a loop repeats a group of statements a predetermined predetermined
number of timesnumber of times.. The general expression of The general expression of for ... endfor ... end is:is:

�� As seen here:As seen here:

forforforfor variable = initial_value:step:final_value
// foo

endendendend

// for-end_demo.sce

// Compute the square root and square /
// of odd integers from 1 to 8 /

n = 8;
for k = 1:2:n

root = sqrt(k);
quadrat = k^2;
disp([k, root, quadrat])

end

No semicolon!

“square” cannot
be used as
variable name
since square() is
a Scilab function

for for …… if if …… else else …… endend

�� for ... endfor ... end can be nested with can be nested with if/elseif/else conditions to allow for conditions to allow for
execution of alternate statements:execution of alternate statements:

�� The next few slides demonstrate a case where random Gaussian The next few slides demonstrate a case where random Gaussian
““noisenoise”” is generated, sorted, and reported both verbally and with a is generated, sorted, and reported both verbally and with a
plotplot

forforforfor variable = initial_value:step:final_value
ifififif condition

// foo
elseelseelseelse

// foo
endendendend

endendendend

// for-if-else.sce

// --- /
// The script generates Gaussian noise around a fixed signal. /
// Each sample ("signal") is sorted according to whether it /
// is within, above or below default variance limits (+/-1). The /
// result is reported verbally with strings and is also plotted /
// --- /

clear,clc,clf;

// Define variables:
// ------------------------
n = 500; // # of for…end loops
above = 0; // Signals above upper variance limit
below = 0; // Signals below lower variance limit
within = 0; // Signals within variance limits
ave = 3; // Mean (average)
x = []; // x axis vector

for for …… if if …… else else …… end: end:

demo, script (1/3)demo, script (1/3)

Only variables, nothing
to comment

for for …… if if …… else else …… end: end:

demo, script (2/3)demo, script (2/3)

// Generate signal:
// ----------------------
dt = getdate(); // Get date
rand('seed',(531+n)*dt(9)+dt(10)); // Initialize random generator
signal= ave + rand(1,n,'normal'); // Shifted Gaussian signal

// Sort signal:
// ----------------
for j = 1:1:n
if signal(1,j) > ave+1 then // Default variance = +/-1

above = above + 1; // Count signal > mean+var
elseif signal(1,j) < ave-1 // Default variance = +/-1

below = below +1; // Count signal < mean-var
else // If within variance limits

within = within + 1; // mean-var <= signal <= mean+var
end

end

Random generation
as discussed before

Note how the signal
array is read
element-by-element
as j goes from 1 to n

for for …… if if …… else else …… end: end:

demo, script (3/3)demo, script (3/3)

// Display result:
// --------------------
disp(['Result from generating', string(n), 'Gaussian distributed samples'])
disp(['(signals) with mean =' string(ave) 'and variance = 1:'])
disp([' -' string(within) ' samples were inside variance limits,'])
disp([' -' string(above) 'above upper variance limit, and'])
disp([' -' string(below) 'below lower limit'])

// Plot result:
// ---------------
x = [1:1:n]; // Array for x axis
y1 = ave*ones(1,n); // Array for mean value
y2 = (ave+1)*ones(1,n); // Array for upper variance limit
y3 = (ave-1)*ones(1,n); // Array for lower variance limit
rect = [0,ave-4,n+1,ave+4]; // Set pot window
plot2d(x,signal,2,"011"," ",rect) // Plot samples
plot2d(x,y1,5,"000") // Plot mean value
plot2d(x,y2,3,"000") // Plot upper variance limit
plot2d(x,y3,3,"000") // Plot upper variance limit
legend('signal','average','variance');
xtitle('GAUSSIAN RANDOM SAMPLES','Sample #','Sample value')

Display on the
Console: Total,
mean, and variance
limits

This particular form
of multiple plots was
discussed earlier and
is worth keeping in
mind

for for …… if if …… else else …… end: end:

demo, print & plotdemo, print & plot

 !Result from generating 500 Gaussian distributed samples !

 !(signals) with mean = 3 and variance = 1: !

 ! - 348 samples were inside variance limits, !

 ! - 75 above upper variance limit, and !

 ! - 77 below lower limit !

69.6% of the samples are
within ±1σ bounds. Quite
ok for 500 samples

It can be seen
that there are one
or two samples
outside the ±3σ
limit, as should be

for for …… if if …… else else …… end: end:

commentscomments
�� Note how the random data is collected by the Note how the random data is collected by the signal(:,nsignal(:,n)) array. array.

Compare this with the Compare this with the x = [x = [x,kx,k]] construct that is used later in construct that is used later in
connection with the discussion on connection with the discussion on break & continuebreak & continue

�� This example was This example was a maddening experiencea maddening experience: I just could not figure : I just could not figure
out how to make the plot work. After hours of attempts I found tout how to make the plot work. After hours of attempts I found the he
problem: I had put the random function inside the problem: I had put the random function inside the for ... endfor ... end looploop

�� What kept me on the wrong track for too long was that the data wWhat kept me on the wrong track for too long was that the data was as
collected correctly, but is was destroyed when it was brought oucollected correctly, but is was destroyed when it was brought outside tside
the the for ... endfor ... end loop. However, that did not happen if there was a loop. However, that did not happen if there was a
display command inside the loop. For instance, no semicolon aftedisplay command inside the loop. For instance, no semicolon after r
signal(:,nsignal(:,n)). Speak of coincidences...... Speak of coincidences.....

�� The problem went away when I finally understood to The problem went away when I finally understood to separate data separate data
generation from the data sorting loopgeneration from the data sorting loop

Lessons learned: Be careful with what you put inside loops

while while …… endend

whilewhilewhilewhile condition
// foo
// loop counter, i.e. count = count +1;

endendendend

�� The The while ... endwhile ... end loop repeats a group of statements an loop repeats a group of statements an indefinite indefinite
number of timesnumber of times under control of a logical conditionunder control of a logical condition

�� The general form of The general form of while ... endwhile ... end is:is:

�� The code to the right determines from The code to the right determines from
which value of k the expressionwhich value of k the expression
2^(2^(--k) <= %k) <= %epseps

�� Be carefulBe careful with with conditioncondition, it can easily, it can easily
lock the simulation in an endless looplock the simulation in an endless loop

-->k = 1;

-->while 2^(-k) > %eps
-->k = k+1;
-->end

-->k
k =

 52.

while while …… if /then/else if /then/else ……

endend

whilewhilewhilewhile condition_1
ifififif condition_2 thenthenthenthen

// foo
elseelseelseelse

// foo
endendendend

// foo
endendendend

�� The The while ... endwhile ... end condition can be nested with an optional condition can be nested with an optional if ... if ...
then ... elsethen ... else instructioninstruction::

�� The function on the next slide is for a game in which the user sThe function on the next slide is for a game in which the user should hould
guess a random number that the computer draws. The game finishesguess a random number that the computer draws. The game finishes
only with the correct guessonly with the correct guess

while while …… if /then/else if /then/else ……

end: demoend: demo

-->guess_a_number

Guess an integer in the range

1. 30.
You guess: 15

Number is too small
You guess: 22

Number is too big
You guess: 17

Number is too small
You guess: 19

Correct!

// game.sci

// The function draws a random number in the /
// range [1,M] that the user should guess. /
// Game finishes when correct number is found /

clear,clc;

M=30; // Upper limit of numbers
number=floor(1+M*rand()); // Draw a random number
disp('Guess a positive integer in the range ');
disp([1,M]); // State range of random numbers
guess=input('You guess: '); // User's guess

while (guess~=number) // Start while condition
if guess>number then // Start if-then-else

disp('Number is too big');
else

disp('Number is too small');
end // End if-then-else
guess=input('You guess: '); // User's next guess

end // End while condition
disp('Correct!');

Save the script, load it
into Scilab (on Editor),
type the function name
on the Console

Lo
op

Comments on Comments on

interactivityinteractivity
�� The previous demo showed examples of interactive use of stringsThe previous demo showed examples of interactive use of strings

–– To To instruct the userinstruct the user::
disp(disp(‘‘GuessGuess an integeran integer’’))

–– To To accept user inputsaccept user inputs::
guess = guess = input(input(‘‘YouYou guess: guess: ’’))

�� To the user the To the user the input()input() prompt is not very clear since the text string prompt is not very clear since the text string
only pops uponly pops up——it should at least blink. One must therefore try to find it should at least blink. One must therefore try to find
expressive text messages. Perhaps the following would be better expressive text messages. Perhaps the following would be better in in
the previous case:the previous case:

guess = guess = input(input(‘‘NowNow, Sir/Madame, type your guess: , Sir/Madame, type your guess: ’’))

�� Interactive text strings is a simple form of humanInteractive text strings is a simple form of human--machine machine
interfaces; Graphical User Interfaces (GUIs) more are advanced ainterfaces; Graphical User Interfaces (GUIs) more are advanced and nd
will be discusses in will be discusses in Chapter 15 Chapter 15 (there was a case already in Ex 1(there was a case already in Ex 1--3)3)

foofoo …… do do …… endend

�� The The dodo keywordkeyword can be used inside can be used inside forfor and and whilewhile instructions to instructions to
separate the loop variable definition (condition) and the instruseparate the loop variable definition (condition) and the instructions. ctions.
The keyword The keyword thenthen can be used with can be used with ifif and and whilewhile

�� The following are examples of The following are examples of for ... do ... endfor ... do ... end and and while ... while ...
do/then ... enddo/then ... end: :

 -->n = 9;

 -->for k = 1:1:3 do
 -->n = n - 3
 -->end
 n =

 6.
 n =

 3.
 n =

 0.

 -->n = 9;

 -->k = 1;

 -->while k <= 3 do
 -->n = n -3
 -->k = k + 1;
 -->end
 n =

 6.
 n =

 3.
 n =

 0.

 -->n = 9;

 -->k = 1;

 -->while k <= 3 then
 -->n = n-3
 -->k = k + 1;
 -->end
 n =

 6.
 n =

 3.
 n =

 0.

if if …… ((elseifelseif/else) /else) …… endend

� The if statement evaluates a logical expression (condition) and
executes a group of statements when the expression is true

� The optional elseif and else keywords provide for the execution of
alternate groups of statements

ifififif condition_1
// foo

elseifelseifelseifelseif condition_2
// foo

……
elseelseelseelse

// foo
endendendend

if if …… elseifelseif/else /else …… end: end:

demodemo

 -->fibonacci(8)
 ans =

 13.

// fibonacci.sci

// Gives the n-th term of the Fibonacci /
// sequence 0,1,1,2,3,5,8,13,... /

funcprot(0) // Suppress redefenition warning
function [K] = fibonacci(n)

if n==1 // Begin if-elseif-else-end
K = 0;

elseif n==2 // Condition to proceed, n > 2
K = 1;

elseif n>2 & int(n)==n // Check if n is an integer >2
K = fibonacci(n-1) + fibonacci(n-2); // Compute Fibonacci #

else // Previous conditions not met
disp('error! -- input is not a positive integer'); // Error message

end // End of if-elseif-else-end
endfunction

Save the script, load it
into Scilab (on Editor),
type on the Console the
function name with the
n argument (Hint: do
not use a large value!)

Check what
happens for n < 1

The following function computes the n:th term of the Fibonacci sequence
when n is given:

select select …… case case …… else else ……

endend
�� The The select ... case ... else ... endselect ... case ... else ... end construct executes the first construct executes the first casecase

that matches the stated condition that matches the stated condition
�� If no match is found it executes the If no match is found it executes the elseelse statement statement
�� The advantage of The advantage of select ... case ... else ... endselect ... case ... else ... end is that it allows us is that it allows us

to avoid multiple to avoid multiple ifif statementsstatements

selectselectselectselect condition
case 1case 1case 1case 1

// foo
case 2case 2case 2case 2

// foo
……
elseelseelseelse

// foo
endendendend

Note: select ... case
is called switch ...
case in Matlab (may
be changed in Scilab)

Hint: Use select ...
case when if …
elseif … else
threatens to become
too complex

select select …… case case …… end: end:

demo, scriptdemo, script
�� Some textbooks on Some textbooks on MatlabMatlab

presents this as the drunk presents this as the drunk
sailor problem. It sailor problem. It
demonstrates a random demonstrates a random
walk, one fixed step at a timewalk, one fixed step at a time

�� The whole process is The whole process is
performed in a single performed in a single
function (function (randwalk(stepsrandwalk(steps))))
that has to be executed from that has to be executed from
the Consolethe Console

�� In this case there is no In this case there is no
problem with having the problem with having the
random generator inside the random generator inside the
for ... endfor ... end looploop

�� The script plots two marks The script plots two marks
((oo--) for each step, although) for each step, although
they cannot be distinguished they cannot be distinguished
on the plot on the next sideon the plot on the next side

// randomwalk.sce

//---/
// Creates a track of marks that proceed randomly /
// in the x,y plane. The walk starts at the origin /
// and proceeds for a predetermined number of steps /
// either up, down, right, or left /
//---/

clear,clc,clf;
funcprot(0);

function randwalk(steps)
x=zeros(1,steps+1); // Counter for x track
y=zeros(1,steps+1); // Counter for y track
for k=1:steps

direction=floor(4*rand()); // Draw random move
select direction
case 0 then

x(k+1)=x(k)+1; // Move right
y(k+1)=y(k);

case 1 then
x(k+1)=x(k)-1; // Move left
y(k+1)=y(k);

select select …… case case …… end: end:

demo, script & plotdemo, script & plot

 -->randwalk(1000)

case 2 then
x(k+1)=x(k);
y(k+1)=y(k)+1; // Move up

case 3 then
x(k+1)=x(k);
y(k+1)=y(k)-1; // Move down

end
end
clf
plot(x,y,'o-'); // Plot marks

endfunction

The starting point
is always the
origin (I have run
this simulation
numerous times
and Scilab seems
to prefer to go in
the northeastern
direction)

After loading the script into
Scilab, the function has to
be run from the Console

break & continuebreak & continue

�� breakbreak lets you exit early from a lets you exit early from a for ... for ...
endend or or while ... endwhile ... end loop, or from loop, or from
within an within an if ... endif ... end statementstatement

�� Execution continues from the line Execution continues from the line
following the following the endend statementstatement

�� In nested loops, In nested loops, breakbreak exits only from exits only from
the innermost loopthe innermost loop

The break command:

The continue command:
�� continuecontinue is a forced return to the start is a forced return to the start

of a of a for ... endfor ... end or or while ... endwhile ... end loop loop
(not (not if ... endif ... end loops!)loops!)

�� Statements between Statements between continuecontinue and the and the
end of the loop will be neglectedend of the loop will be neglected

 -->k = 0;

 -->while 1 == 1,
 -->k = k + 1;
 -->disp(k);
 -->if k > 6 then
 -->break
 -->end;
 -->end

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 -->for j = 1:2
 -->x = [];
 -->for k = 1:10
 -->if k>j+1 & k<=8 then
 -->continue
 -->end
 -->x = [x,k];
 -->end
 -->x
 -->end
 x =

 1. 2. 9. 10.
 x =

 1. 2. 3. 9. 10.

break: demobreak: demo

// break.sce

// Input m positive integers that are summed /
// up, but the program breaks if the input /
// is not a positive integer /

clear,clc;

n = input('Give amount of numbers to sum_');
summa = 0; // Reset summa counter
for i = 1:n

number = input('Give next number_');
if number < 0 // Condition: number ~< 0

disp('wrong-----negative value!');
break;

end
if number ~= int(number) // Check if integer

disp('wrong-----not an integer!');
break;

end
summa = summa + number; // Sum up

end
disp(['Accumulated error-free sum is:' string(summa)]);

 Give amount of numbers to sum_3
 Give next number_13
 Give next number_17
 Give next number_7

 !Accumulated error-free sum is: 37 !

 Give amount of numbers to sum_3
 Give next number_17
 Give next number_2
 Give next number_-1

 wrong-----negative value!

 !Accumulated error-free sum is: 19 !

 Give amount of numbers to sum_ 4
 Give next number_ 18
 Give next number_ 3.3

 wrong-----not an integer!

 !Accumulated error-free sum is: 18 !

try try …… catch catch …… endend

�� With no errors, the code between With no errors, the code between trytry and and catchcatch is executedis executed
�� If an error occurs, execution immediately shifts to the code betIf an error occurs, execution immediately shifts to the code between ween

catchcatch and and endend::

�� Typically the code between Typically the code between catchcatch and and endend informs of an expected informs of an expected
error, e.g. error, e.g. dispdisp((‘‘--------warning: cannot access the functionwarning: cannot access the function--------’’))

trytrytrytry
// foo
// If an error occurs in this part....

catchcatchcatchcatch
// execution continues here
// foo

endendendend

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

12. Examples, Set 412. Examples, Set 4

The first three examples relateThe first three examples relate
to Chapter 10, the rest to to Chapter 10, the rest to

Chapter 11Chapter 11

Return to Contents

Example 4Example 4--1: step 1: step

function, unit step (1/2)function, unit step (1/2)
�� Step functions are useful in Step functions are useful in

many practical applicationsmany practical applications
�� As mentioned in As mentioned in Ex 2Ex 2--33, Scilab , Scilab

lacks a separate function for lacks a separate function for
creating (unit) steps, but we creating (unit) steps, but we
can form them indirectly (in Ex can form them indirectly (in Ex
22--3 it was done with a unit 3 it was done with a unit
vector)vector)

�� Here we shall look at two cases Here we shall look at two cases
where a step is neededwhere a step is needed

�� In the first demo a step is In the first demo a step is
created with a user defined created with a user defined
function that includes the function that includes the sign()sign()
function (function (HelpHelp is of no help is of no help
here, you donhere, you don’’t understand t understand
what it says about what it says about sign()sign()))

0

1

y

tt0

y(t) =
0, t < t0

1, t > t0

Unit step:

Ex 4Ex 4--1: step function, unit 1: step function, unit

step (2/2)step (2/2)

Note how the sign()
function is shifted (addition
by 1) and compressed
(multiplied by 0.5) to get
the required unit step

// step_sign.sce
// Plot a sign() fucntion that is shifted by 1 /
// & compressed by 0.5 to give a unit step /

clear,clc,clf;
funcprot(0);

x = linspace(-5,5,400);
deff('y=u(x)','y=0.5*(1+sign(x))') // Define sign() function,

// shift & compress as needed

rect = [-5.2,-0.2,5.2,1.2]; // Define plot frame
plot2d(x,u(x),5,'011',' ',rect) // Plot inside frame

xgrid() // Add grid to plot

a=gca(); // Get axes handle
a.title.text="UNITY STEP"; // Add title
a.children.children.thickness=3; // Increase line thickness

Ex 4Ex 4--1: step function, 1: step function,

rectangular pulse (1/2)rectangular pulse (1/2)

�� The second case is a The second case is a
rectangular pulse with rectangular pulse with
amplitude A as shown in the amplitude A as shown in the
figurefigure

�� In this case we do it without a In this case we do it without a
user defined function, since it user defined function, since it
leads to a simpler scriptleads to a simpler script

�� The plot command can also be The plot command can also be
simplified somewhatsimplified somewhat y(t) =

A, t0 ≤ t < t1

0, otherwise

Rectangular pulse:

0

A

y

tt0 t1

// rect_pulse.sce

// Plot a rectangular pulse with /
// width 3 < t < 5 and amplitude 2 /

clear,clc,clf;

t = 0:0.01:10;
deff('y=u(t)','y=1*(t>=0)'); // Define u(t)

y = 2*(u(t-3) - u(t-5)); // Define pulse
plot2d(t,y,5,rect=[0,0,8,2.5]) // Plot
xgrid() // Add grid

f=gcf(); // Figure handle
f.children.thickness=2; // Figure lines
a=gca();
c=a.children; // Compound handle
c.children.thickness=3; // Line thickness

Ex 4Ex 4--1: step function, 1: step function,

rectangular pulse (2/2)rectangular pulse (2/2)
Note that the argument u() does
not have to be defined separately

rect can be defined even if style,
strf, and leg are absent

Thick figure lines & graph with
increased line thickness

Ex 4Ex 4--1: step function, 1: step function,

commentscomments

�� In the first case (unit step) the handle command for line thicknIn the first case (unit step) the handle command for line thickness is ess is

a.children.children.thickness=3;

In the second case (rectangular pulse) Scilab did not accept thiIn the second case (rectangular pulse) Scilab did not accept this s
form and it had to be rewritten asform and it had to be rewritten as

c=c=a.childrena.children;;
c.children.thicknessc.children.thickness=3;=3;

I have no idea why this is the case and I have no idea why this is the case and Help Help certainly is of no helpcertainly is of no help

�� In the latter case I happened to write the script without the In the latter case I happened to write the script without the deffdeff()()
function, and for a while everything came out all right. But whefunction, and for a while everything came out all right. But when I n I
added handle commands Scilab decided that the variable added handle commands Scilab decided that the variable uu is is
undefined. The KISS principle (Keep It Simple, Stupid) did not aundefined. The KISS principle (Keep It Simple, Stupid) did not apply pply
in this casein this case

Example 4Example 4--2: cones in a 2: cones in a

3D space3D space
�� This example is adapted from This example is adapted from ChancelierChancelier et al., pp. 163et al., pp. 163--166166
�� The script is The script is quite complexquite complex with four subroutines and three separate with four subroutines and three separate

plotting structures, which makes it difficult to follow the tranplotting structures, which makes it difficult to follow the transfer of sfer of
parameters. Changing an argument can have unexpected parameters. Changing an argument can have unexpected
consequencesconsequences

�� Some aspects of the script have not been covered before and willSome aspects of the script have not been covered before and will be be
left without detailed discussion here as well (see however Ex 4left without detailed discussion here as well (see however Ex 4--3)3)

�� The object, a cone (the book mentions and shows a vase), is plotThe object, a cone (the book mentions and shows a vase), is plotted ted
in three separate positions using in three separate positions using lateral shifts, rotation, and nonlateral shifts, rotation, and non--
rotational dilation (rotational dilation (homothetyhomothety)) of the objectsof the objects

�� The cones are shaded using The cones are shaded using handleshandles that are called through the that are called through the
gcegce()() commandcommand

�� Scilab functions used for the first time: Scilab functions used for the first time: diagdiag()(), , eval3dp()eval3dp(), ,
graycolormapgraycolormap()(), , isoviewisoview()(),* ,* size()size()

*) The function isoview() is obsolete. The Help Browser recommends
using frameflag=4 instead.

Ex 4Ex 4--2: script (1/4)2: script (1/4)

// cone_manipulation.sce

// ** //
// The script generates and plots a cone with its //
// tip at the origin. It plots two copies of the //
// cone, one shifted and one shifted & rotated //
// //
// ** //

clear,clc,clf;

// Vertical reach of 3D object:
vertical=[0,1.0,1.6,2.5,2.2,2,1.6,0.9,0.5,0.3,0.3,0.4,0.6,1,1.4,...
1.7,0,0,0.1,0.4,0.8,1.1,1.4,1.7,1.9,2.2,2.4,2.7,3,3.3,3.7,3.9]/2;

// SUBROUTINE 1: Generation of 3D object:
//--
function [x,y,z]=cone(reach,Z) // Generation of a 3D object
x=vertical(1,Z).*cos(reach) // Extension along x axis
y=vertical(1,Z).*sin(reach) // Extension along y axis
z=vertical(1,Z).*ones(reach) // Vertical (z) axis

endfunction

�� vertical[]vertical[] tells how to tells how to
move along the z axis in move along the z axis in
later calculations. Note later calculations. Note
the increasing and the increasing and
decreasing values that decreasing values that
will cause will cause problemsproblems for for
shadingshading

�� The function The function cone()cone()
generates the cone in generates the cone in
case. Example #12 case. Example #12
discusses how it is donediscusses how it is done

Ex 4Ex 4--2: script (2/4)2: script (2/4)

// SUBROUTINE 2, Lateral shifts:
//---
function XYZ=translation(vect,xyz)
XYZ=(vect(:)*ones(1,size(xyz,2))) + xyz // Translation vector

endfunction

// SUBROUTINE 3, Non-rotational dilation: (center =
// center of dilation, f = dilation factor)
//---
function XYZ=homothety(center,f,xyz)
XYZ=translation(center,diag(f)*translation(-center,xyz))

endfunction

// SUBROUTINE 4, Rotation:
//-------------------------------------
function XYZ=rotation(angle,xyz)
angle=angle/180*%pi; // Angle of rotation around axes
c=cos(angle);
s=sin(angle);
Rx=[1 0 0;0 c(1) s(1);0 -s(1) c(1)] // Rotation along x axis
Ry=[c(2) 0 s(2);0 1 0;-s(2) 0 c(2)] // Rotation along y axis
Rz=[c(3) s(3) 0;-s(3) c(3) 0;0 0 1] // Rotation along z axis
XYZ=Rx*Ry*Rz*xyz

endfunction

�� Lateral shifts of objects Lateral shifts of objects
are handled by the are handled by the
function function translation()translation()

�� NonNon--rotational dilatation rotational dilatation
of objects is the task of of objects is the task of
homothetyhomothety()()

�� rotation()rotation() creates a creates a
matrix for rotating matrix for rotating
objects around the three objects around the three
axesaxes

Those are the four user Those are the four user
defined functionsdefined functions

Ex 4Ex 4--2: script (3/4)2: script (3/4)

// ----------------------- MAIN --------------------- //
// ---- STEP 1: CREATE & PLOT BASIC CONE ---- //

// Superimpose rectangular facets:
//--
[xv,yv,zv]=eval3dp(cone,linspace(-%pi,%pi,20),1:10);
f=gcf(); // Get Current Figure, create figure
f.color_map=graycolormap(32); // Select color

// Plot basic cone with tip at the origin:
//--
plot3d(xv,yv,zv)
e1=gce(); // Get Current Entity handle
e1.color_mode = 24; // Object exterior: light grey
e1.hiddencolor = 30; // Object interior: dark grey

// ---- STEP 2: MANIPULATE & PLOT OTHER CONES ---- //

// Object manipulations parameters:
//--
XYZ=[xv(:)';yv(:)';zv(:)']; // XYZ = 3 x N matrix
XYZT=translation([1 3 -3],XYZ); // Lateral shifts
XYZH=homothety([5 7 -3],1.5*[1 1 1],XYZT);

// Non-dilational rotation
XYZR=rotation([-15 15 30],XYZT); // Rotation

�� eval3dp()eval3dp() transforms transforms
the smooth surface that the smooth surface that
cone()cone() creates into a creates into a
composition of composition of
quadrangular facets quadrangular facets

�� Here we plot the basic Here we plot the basic
cone, which has its tip cone, which has its tip
in the origin. The in the origin. The
exterior and interior of exterior and interior of
the cone should have the cone should have
different shadesdifferent shades

�� Objects are manipulated Objects are manipulated
by vectors created by by vectors created by
the earlier user defined the earlier user defined
functionsfunctions

Ex 4Ex 4--2: script (4/4)2: script (4/4)
// Plot second cone (enlarged):
//---
plot3d(matrix(XYZH(1,:),4,-1),matrix(XYZH(2,:),

4,-1),matrix(XYZH(3,:),4,-1))
e2=gce(); // Get Current Entity handle
e2.color_mode = 24; // Object exterior: light grey
e2.hiddencolor = 30; // Object interior: dark grey

// Plot third cone (rotated):
//-------------------------------------
plot3d(matrix(XYZR(1,:),4,-1),matrix(XYZR(2,:),

4,-1),matrix(XYZR(3,:),4,-1))
e2=gce(); // Get Current Entity handle
e2.color_mode = 24; // Object exterior: light grey
e2.hiddencolor = 30; // Object interior: dark grey

// ---- STEP 3: ADJUST THE BOX ---- //

// Adjust Axes properties:
//-------------------------------
a=gca(); // Get Current Axes
a.data_bounds=[-3 -3 -3;3 3 3]; // Box dimensions
a.rotation_angles=[75 77]; // Rotation of the box
a.isoview='on'; // Isometric scaling

// ---- END OF MAIN ---- //

�� Plot another cone, this Plot another cone, this
one is zoomed up and one is zoomed up and
sifted laterally. Same sifted laterally. Same
shading as before shading as before

�� And the third plot, with And the third plot, with
the cone shifted the cone shifted
laterally and rotated. laterally and rotated.
Shading as beforeShading as before

�� Properties of the box Properties of the box
around the cones is around the cones is
adjusted. Isometric adjusted. Isometric
scaling is scaling is ““onon”” (check (check
with with HelpHelp for an for an
explanation)explanation)

Ex 4Ex 4--2: plot2: plot

�� Original cone with Original cone with
tip at the origin tip at the origin

�� Second cone, Second cone,
laterally shifted laterally shifted
and enlargedand enlarged

�� Third cone, Third cone,
laterally shifted laterally shifted
and rotatedand rotated

And the shading And the shading
of them is all of them is all
wrongwrong. See . See
Example 4Example 4--3 3 for for
an explanationan explanation

Ex 4Ex 4--2: comments2: comments

�� ChancelierChancelier et al. have not documented their examples too well, et al. have not documented their examples too well,
which in this casewhich in this case——together with errors in their solutiontogether with errors in their solution——caused caused
major problems when I tried to understand the script. major problems when I tried to understand the script. DO NOT DO NOT
UNDERESTIMATE THE NEED TO DOCUMENT PROGRAMS!UNDERESTIMATE THE NEED TO DOCUMENT PROGRAMS! You may You may
be the one that suffers when your code has to be changed, years be the one that suffers when your code has to be changed, years
after it was writtenafter it was written

�� The first requirement of documentation is liberal use of The first requirement of documentation is liberal use of commentscomments in in
the codethe code

�� Among the handle commands are some that have not been Among the handle commands are some that have not been
discussed before: discussed before: f.color_mapf.color_map==graycolormapgraycolormap, , e1.color_modee1.color_mode, ,
e1.hidden_colore1.hidden_color, , a.rotation_anglesa.rotation_angles, and , and a.isoviewa.isoview==‘‘onon’’ (recall (recall
however the however the colormapcolormap command that was used in Ex 3command that was used in Ex 3--5)5)

Example 4Example 4--3: how to 3: how to

generate a conegenerate a cone

�� How was the cone in the How was the cone in the
previous example previous example
generated? The interplay generated? The interplay
between the matrix between the matrix
vertical[]vertical[],, user defined user defined
function function cone()cone(), and , and
facet generation function facet generation function
eval3dp()eval3dp() are not too are not too
obviousobvious

�� LetLet’’s simplify the case to s simplify the case to
a bare minimuma bare minimum

�� And look at the result on And look at the result on
the next slidethe next slide

// cone_creation.sce

// A bare-bone eval3dp() script for plotting a 3D cone /

clear,clc,clf;
vertical=[0,1,2,2.3,3,4]; // Vertical reach of 3D object

function [x,y,z]=cone(reach,Z) // Generation of a 3D object
x=vertical(1,Z).*cos(reach) // Extension along x axis
y=vertical(1,Z).*sin(reach) // Extension along y axis
z=vertical(1,Z).*ones(reach) // Vertical (z) extension

endfunction

[xv,yv,zv]=eval3dp(cone,linspace(-%pi/1.5,%pi,20),1:5);

plot3d(xv,yv,zv,theta=60,alpha=70) // Plot object
e1=gce(); // Get current Entity handle
e1.color_mode = 24; // Object exterior: light grey
e1.hiddencolor = 30; // Object interior: dark grey

Ex 4Ex 4--3: plot3: plot

Z5 = 3

Z4 = 2.3

Z3 = 2

Z2 = 1

Z1 = 0

Dark gray interior (e1.hiddencolor = 30)

Light gray exterior (e1.color_mode = 24)

Gap in the surface
due to the argument
linspace(-%pi/1.5,
%pi,20)

Box alignment
defined by theta
and alpha in
plot3d()

Ex 4Ex 4--3: discussion3: discussion

�� The cone is created by the linearly increasing radius RThe cone is created by the linearly increasing radius RZZ of x and y:of x and y:

x = Rx = RZZ .*.*cos(Zcos(Znn))
y = Ry = RZZ.*.*sin(Zsin(Znn))

If you change the first element in If you change the first element in vertical[]vertical[] from 0 to 0.5, youfrom 0 to 0.5, you’’ll see ll see
that the tip of the cone is cut offthat the tip of the cone is cut off

�� There are six elements in the vector There are six elements in the vector vertical[]vertical[].. The last one (4) is The last one (4) is
never used since the third argument in never used since the third argument in eval3dp()eval3dp() is 1:5, meaning is 1:5, meaning
that only the first five vector elements are needed. Hence the zthat only the first five vector elements are needed. Hence the z axis axis
of the plot is [0,3]of the plot is [0,3]

�� I left a gap in the perimeter of the cone to demonstrate the rolI left a gap in the perimeter of the cone to demonstrate the role of e of
the second argument in the second argument in eval3dp()eval3dp()

�� This example has This example has correct shadingcorrect shading of the object. The of the object. The surface pattern surface pattern
in Ex 4in Ex 4--2 2 is no artistic creation but messed up due to overlapping Zis no artistic creation but messed up due to overlapping Znn
valuesvalues

// vase_creation.sce

// A bare-bone eval3dp() script for plotting a 3D vase /

clear,clc,clf;

vertical=[0,1,2,2.3,3,4]; // Vertical reach of 3D object
R_factor=[1,1,0,-1.5,-1,0]; // Correction matrix

function [x,y,z]=cone(reach,Z) // Generation of a 3D object
R=vertical+R_factor; // Radius of vase, R=f(Z)
x=R(1,Z).*cos(reach) // Extension along x axis
y=R(1,Z).*sin(reach) // Extension along y axis
z=vertical(1,Z).*ones(reach) // Vertical (z) extension

endfunction

[xv,yv,zv]=eval3dp(cone,linspace(-%pi,%pi,20),1:5);

plot3d(xv,yv,zv,theta=60,alpha=70) // Plot object
e1=gce(); // Get Current Entity handle
e1.color_mode = 24; // Object exterior: light grey
e1.hiddencolor = 30; // Object interior: dark grey

Ex 4Ex 4--3: how to transform 3: how to transform

the cone to a vasethe cone to a vase
�� How do we create the How do we create the

vase that vase that ChancilierChancilier et et
al. talk about?al. talk about?

�� Quite obviously, we Quite obviously, we
have to alter Rhave to alter RZZ inin
x=Rx=RZZ.*.*cos(Zcos(Znn))
y=Ry=RZZ.*.*sin(Zsin(Znn))

�� Here is one way to do Here is one way to do
it: by introducing a it: by introducing a
vector vector R_factorR_factor that that
compensates for the compensates for the
linear increase in Rlinear increase in RZZ

�� And the result is shown And the result is shown
on the next slideon the next slide

Ex 4Ex 4--3: vase plot3: vase plot

Not bad, eh?

But I have no idea where
the pink & aniline colors
came from, they bumped
up when I executed the
script after Scilab had
crashed. The gray scale
returned after I reloaded
Scilab for a second time

Example 4Example 4--4: ballot 4: ballot

engine for politiciansengine for politicians
�� The function on the next two slides is a The function on the next two slides is a

ballot machine that help politicians ballot machine that help politicians
decide on how to cast their votedecide on how to cast their vote

�� The number of issues to vote on is The number of issues to vote on is
entered and the code checks that the entered and the code checks that the
number is a positive integernumber is a positive integer

�� Scilab then draws random numbers Scilab then draws random numbers
and transforms them to verbal votes and transforms them to verbal votes
(yes/no/abstain)(yes/no/abstain)

�� The votes are finally put into groups of The votes are finally put into groups of
threethree

�� The function demonstrates the use of The function demonstrates the use of
select ... case ... endselect ... case ... end with a finishing with a finishing
modulo()modulo() statement statement

�� It also shows the use of repeated It also shows the use of repeated if ... if ...
endend statements (necessary or not?)statements (necessary or not?)

 -->voting
 Give number of issues to vote on_5

 Now this is how you should vote:

 yes

 no

 yes

 abstain

 no

 -->voting
 Give number of issues to vote on_-2.2

 warning-----must be > 0

Ex 4Ex 4--4: script (1/2)4: script (1/2)

�� A good part of the A good part of the
function commands function commands
are related to are related to
checking the validity checking the validity
of dataof data

�� The first check makes The first check makes
sure that the number sure that the number
entered by the user is entered by the user is
> 0> 0

�� The next check is to The next check is to
make sure that n is an make sure that n is an
integerinteger

�� Pay attention to the Pay attention to the
abortabort commands!commands!

// voting.sci

// Ballot machine for politicians. The number /
// of issues to be voted on is entered and /
// Scilab tells how to vote on them. The /
// answers are presented in groups of three /

clear,clc;
funcprot(0)

function voting

// Give input and check entered number:
//---
n = input('Give number of issues to vote on_ ');
if n <= 0 do // # of votings must be > 0

disp('warning-----must be > 0');
abort;

end
if n ~= int(n) do // n should be an integer

disp('warning-----not an integer!');
abort;

end

Ex 4Ex 4--4: script (2/2)4: script (2/2)

// Create n random numbers 0,1 or 2:
//--
dt=getdate(); // Get initial seed
rand('seed',1000*dt(9)+dt(10)); // Seed random generator
votes = floor(3*rand(n,1)); // Generate votes (0,1, or 2)

// Transform random numbers to verbal votes:
//--
disp('Now this is how you should vote:');
for k = 1:n

select votes(k)
case 0 then
disp('yes'); // 0 = yes

case 1 then
disp('no'); // 1 = no

case 2 then
disp('abstain'); // 2 = abstain

end
if modulo(k,3)==0 // 3 votes given?

disp(' ') // Leave space after 3 rows
end

end

endfunction

�� Generation of random Generation of random
numbers in the similar numbers in the similar
manner to Ex 1manner to Ex 1--33

�� Then a Then a select ... case select ... case
... end... end construct that construct that
transforms the transforms the
random numbers to random numbers to
text stringstext strings

�� Finally the string Finally the string
outputs are grouped outputs are grouped
into threes. Pay into threes. Pay
attention to how attention to how
handy the handy the modulo()modulo()
function is!function is!

Ex 4Ex 4--4: comments4: comments

�� Scilab has several commands related to forced termination of Scilab has several commands related to forced termination of
an ongoing process: an ongoing process: abortabort, , breakbreak, , exitexit, , quitquit, , returnreturn, ,
resumeresume. Check with . Check with HelpHelp for detailsfor details

�� In this example I had some problems with jumping out of the In this example I had some problems with jumping out of the
program in the right manner:program in the right manner:
–– According to According to Help BrowserHelp Browser the the exitexit command should end the command should end the

current Scilab sessioncurrent Scilab session——whatever it means. It turned out that whatever it means. It turned out that
exitexit performs more or less like the performs more or less like the breakbreak command by only command by only
ending the present loopending the present loop

–– quitquit is a brute that closes down Scilabis a brute that closes down Scilab
–– Trial and error showed that Trial and error showed that abortabort had the expected effect of had the expected effect of

jumping to the end of the function jumping to the end of the function

Good old Good old GO TOGO TOstatement, where have you been all these yearsstatement, where have you been all these years——and why and why
do they give you such fancy names?do they give you such fancy names?

Example 4Example 4--5: nested 5: nested

structures, scriptstructures, script

// conditional.sce

// Climb up or down the scale depending on /
// input data ("u" or "d") without exceeding /
// the limits. The process ends when "e" is /
// pressed /

scale = [1 2 3 4 5 6 7 8 9]'; // Define scale to climb
i = 1; // Preset counter
strg = ' '; // strg = empty string
while strg ~= 'e' // Until the "e" key is hit
disp(scale(i,:)); // Display location on scale
strg = input('Exit(e), Up(u), Down(d)?','string')
if strg == 'u' then // If "u" is hit

i = min(i+1, size(scale,1)); // One step up, until highest
elseif strg == 'd' then // But if "d" is hit
i = max(i-1, 1); // One step down, until lowest

elseif strg == 'e' then // If "e" is hit
break; // Jump out of the loop

else // Whatever else is hit
disp('---incorrect input---') // Present error message

end // End of if statement
end // End of while statement
disp('you hit e=Exit') // Exit message

w
hi

le
 .
..
 e

nd

if
..
.
en

d

This script contains an if
... elseif ... else ... end
structure nested within an
while ... end structure
(read the title for an
explanation of what the
script does)

Note how
min() and
max() ensure
that scale limits
are not
exceeded

Example 4Example 4--5:5:

executionexecution

The scale counter i is preset to
1 and increases/decreases
depending on the entered data

Any input parameter except u,
d, or e give an error message

The break command works well
in this case

Homework: Modify the script by using the
select ... case ... else ... end structure
instead of if ... elseif ... else ... end.
Which solution is simpler?

1.
Exit(e), Up(u), Down(d)?u
strg =
u

2.
Exit(e), Up(u), Down(d)?u

strg =
u

3.
Exit(e), Up(u), Down(d)?d

strg =
d

2.
Exit(e), Up(u), Down(d)?6

strg =
6

---incorrect input---

2.
Exit(e), Up(u), Down(d)?u

strg =
u

3.
Exit(e), Up(u), Down(d)?e

strg =
e

you hit e=Exit

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

13. Doing math on 13. Doing math on

ScilabScilab

Scilab contains functions for Scilab contains functions for
sophisticated mathematics. Wesophisticated mathematics. We’’ll ll
stay with the simpler casesstay with the simpler cases

Return to Contents

Math in earlier chaptersMath in earlier chapters

�� Chapter 3: Complex numbers, Chapter 3: Complex numbers, vectorizedvectorized functions, functions,
polynomialspolynomials

�� Chapter 4: Trigonometric functions, random functionsChapter 4: Trigonometric functions, random functions
�� Chapter 5: Matrices, matrix operations, matrix operators, Chapter 5: Matrices, matrix operations, matrix operators,

symbolic computing, random generators symbolic computing, random generators
�� Chapter 6: Linear equation systems with real coefficientsChapter 6: Linear equation systems with real coefficients
�� Chapter 7: 2D and 3D functions, vector fields, histograms, Chapter 7: 2D and 3D functions, vector fields, histograms,

rotation surfaces, logarithms, polar coordinatrotation surfaces, logarithms, polar coordinateses
�� Chapter 8: Polynomial expressionsChapter 8: Polynomial expressions
�� Chapter 9: Application of matrices & trigonometric functionsChapter 9: Application of matrices & trigonometric functions
�� Chapter 10: Arithmetic and algebraChapter 10: Arithmetic and algebra
�� Chapter 11: Logical expressionsChapter 11: Logical expressions
�� Chapter 12: Step functions, application of 3D vector spaces Chapter 12: Step functions, application of 3D vector spaces

"Do not worry about your problems with mathematics, I assure you mine are
far greater.” Albert Einstein

optimoptim() & () & fsolvefsolve(): ():

demo (1/4), the taskdemo (1/4), the task

�� The functions The functions optimoptim()() and and fsolvfsolv()() give us tools by which to give us tools by which to
investigate nonlinear equations and/or equation systems:investigate nonlinear equations and/or equation systems:

–– optimoptim()() to find minima (and indirectly maxima)to find minima (and indirectly maxima)
–– fsolvfsolv()() to find solutions (roots) to equations/equation systemsto find solutions (roots) to equations/equation systems

�� optimoptim()() is a quite complex function, which is evident in the Help is a quite complex function, which is evident in the Help
BrowserBrowser’’s confusing description. Here we shall stick to a basic case s confusing description. Here we shall stick to a basic case
by applying by applying optimoptim()() and and fsolvfsolv() () to the equationto the equation

y = y = sin(x)/((xsin(x)/((x -- 0.1)0.1)22 + 0.1)+ 0.1)

�� We solve the problem in two steps:We solve the problem in two steps:
–– First by plotting the graph to get better understanding of the fFirst by plotting the graph to get better understanding of the function, unction,

and simultaneously computing min and max values for y using and simultaneously computing min and max values for y using optimoptim()()

–– Then we apply Then we apply fsolvefsolve()() to compute exact root locations with the aid of to compute exact root locations with the aid of
visual estimates from the plotted graph visual estimates from the plotted graph

optimoptim() & () & fsolvefsolve(): ():

demo (2/4), scriptdemo (2/4), script
// optim_list.sce

// Investigation of minima and maxima of the function /
// sin(x)/((x-0.1)^2+0.1) /

clear,clc,clf;
// SUBROUTINES
//----------------------
deff('[fun1,grad,ind]=cost1(x,ind)',... // Function

'fun1=sin(x)/((x-0.1)^2+0.1),grad=0');
deff('[fun2,grad,ind]=cost2(x,ind)',... // Inverse function,

'fun2=-sin(x)/((x-0.1)^2+0.1),grad=0'); // note minus sign

// ---- MAIN ---- //
// Plot function:
//--------------------
x=-5:0.01:5;
fplot2d(x,cost1,5) // Plot function
xgrid

// Display min & max by calling subroutines:
//---
disp(optim(list(NDcost,cost1,0),0)) // Display y min
disp(-optim(list(NDcost,cost2,0),0)) // Display y max
// ---- END OF MAIN ---- //

optim() requires a Scilab
subroutine of the type
[f,g,ind]=cost(x,ind). The
numeric value of grad is
irrelevant

Plotting is done with
flpot2d(), which is quite
similar to plot2d()

I do not know why there
has to be a third numeric
argument in list(), Scilab
just requires something (I
tried and cried...)

The second argument of
optim(list(),0) defines the
gradient that we are
interested in

fsolvefsolve() and () and optimoptim(): ():

demo (3/4)demo (3/4)

�� Her are the minimum Her are the minimum
and maximum y and maximum y
values produced by values produced by
optimoptim()()

�� And here is the plot. And here is the plot.
It is clear that it has It is clear that it has
three roots three roots

�� The next task is to The next task is to
locate the roots. For locate the roots. For
that that we must provide we must provide
approximate solutionsapproximate solutions
(e.g. (e.g. --3,0,3 in this 3,0,3 in this
case), based on which case), based on which
Scilab computes an Scilab computes an
exact solution for the exact solution for the
given neighborhoodgiven neighborhood

min

max

roots

 - 1.1381166

 2.1199214

min

max

fsolvefsolve() and () and optimoptim(): demo(): demo

(4/4), solving the roots(4/4), solving the roots

�� As said on the previous slide, approximate values for the roots As said on the previous slide, approximate values for the roots are:are:
x1 x1 ≈≈ --3, x2 3, x2 ≈≈ 0, x3 0, x3 ≈≈ 33

�� With the script is loaded into Scilab, we find the solutions on With the script is loaded into Scilab, we find the solutions on the the
Console using the command Console using the command x = fsolve(x0,f)x = fsolve(x0,f): :

 -->x1 = fsolve(-3,cost1)
 x1 =

 - 3.1415927

 -->x2 = fsolve(0,cost1)
 x2 =

 0.

 -->x3 = fsolve(3,cost1)
 x3 =

 3.1415927

x1

x2

x3

Equation systems require
a different approach. See
e.g. Zogg, pp. 66-69

I said above that the Help
Browser is confusing when one
tries to find out something about
optim(). A better source is
Section 4.2 in Campbell et al.

fsolvefsolve(): limitation(): limitation

// fsolve.sce

// Solves, for the equation sin(a*x)-x*exp(-x), /
// the root closest to a defined point. /
// Note: The selected point must not be too /
// close to the midpoint between two roots /

clear,clc,clf;
function y=myfunc(x)

a=1;
y=sin(a*x)-x.*exp(-x);

endfunction

x1=linspace(0,10,300);
plot2d(x1,myfunc(x1),5) // Plot function
plot2d(x1,zeros(x1),2) // Add y=0 graph
point = 8; // Point of interest
[x,y]=fsolve(point,myfunc) // Def root closest to point
plot2d(x,y,-3) // Add mark for root location Root mark in wrong place

The script below demonstrates that for values of point close to peak of
the sin curve, e.g. 4.6 or 8, Scilab cannot solve the root correctly

Complex numbers:Complex numbers:

demo, taskdemo, task

�� Complex numbers Complex numbers
have not been have not been
discussed at any discussed at any
length before, so letlength before, so let’’s s
look at a practical look at a practical
problemproblem

�� The task is to solve The task is to solve
the steadythe steady--state state
currents icurrents i11, i, i22, and i, and i33
in the shown circuitin the shown circuit

�� Recall Recall Example 2Example 2--2 2
and write down the and write down the
impedance matriximpedance matrix Z Z
by inspectionby inspection

R2+jL -R2 -jL
-R2 R1+R2 -R1
-jL -R1 R1+jL-jC

[Z] =

Ω

Ω Ω

Ω

Complex numbers:Complex numbers:

demo, equationsdemo, equations

�� By plugging in numeric values we get the following stateBy plugging in numeric values we get the following state--space space
equation equation [I]=[Z][I]=[Z]--11[u][u]. Scilab does not have a function for shifting . Scilab does not have a function for shifting
between polar and rectangular coordinates, so we recalculate thebetween polar and rectangular coordinates, so we recalculate the
voltages manually (a rectangularvoltages manually (a rectangular--toto--polar conversion routine is polar conversion routine is
included in the script), which is simple in this caseincluded in the script), which is simple in this case::

�� Note that u2 was selected opposite to u1, hence the minus signNote that u2 was selected opposite to u1, hence the minus sign
�� Scilab has no problems with doing inverse matrices but, as mentiScilab has no problems with doing inverse matrices but, as mentioned oned

before, left hand division (before, left hand division (\\) typically gives better accuracy) typically gives better accuracy

i1
i2 =
i3

0-j100
-500-j0

0+j0

80+j12 -80 -j12
-80 100 -20
-j12 -20 20-j8

-1

Complex numbers:Complex numbers:

demo, script (1/3)demo, script (1/3)

// circuit3.sce

// Complex mesh-current solution. The complex results are /
// converted from rectangular to polar values by computing /
// their magnitude and phase. The clean() function is used /
// to eliminate computing errors around zero. /

clear,clc;

// Compute complex currents:
//---------------------------------------
Z = [80+12*%i, -80, -12*%i;

-80, 100, -20;
-12*%i, -20, 20-8*%i]; // Impedance matrix

u = [-100*%i; -500; 0]; // Voltage matrix
i_n = Z\u; // Compute i = Z\u

// Calculate magnitude and phase:
//---
magn_i = []; // Define empty current matrix
phase_i = []; // Define empty phase matrix
for j = 1:1:3 // Compute for three currents
magn_i(j) = sqrt(real(i_n(j))^2 + imag(i_n(j))^2);

// Computes magnitude

�� The initial step is as The initial step is as
Ex #5; the residual Ex #5; the residual
check is at the end of check is at the end of
the scriptthe script

�� Now we have to Now we have to
transform rectangular transform rectangular
data to polar datadata to polar data

�� The The for for …… endend loop is loop is
run through three run through three
times, once for each times, once for each
current (i1current (i1……i3)i3)

�� Computing the Computing the
magnitude is magnitude is
straightforwardstraightforward

Complex numbers:Complex numbers:

demo, script (2/3)demo, script (2/3)

�� This is where one has This is where one has
to be careful and to be careful and
consider all consider all
alternativesalternatives

�� Note that the zero Note that the zero
(0) condition gets a (0) condition gets a
margin for computing margin for computing
errors through the errors through the
clean()clean() functionfunction

�� Each time the Each time the for ... for ...
endend loop is run loop is run
through, the matrix through, the matrix
result()result() collects the collects the
datadata

// Calculate phase:
//------------------------
if clean(real(i_n(j))) > 0 then // In 1st or 4th quadrant

phase_i(j) = atan(imag(i_n(j))/real(i_n(j)))*(180/%pi);
elseif clean(real(i_n(j))) < 0 // In 2nd or 3rd quadrant

if clean(imag(i_n(j))) > 0 then // In 2nd quadrant
phase_i(j) = atan(imag(i_n(j))/real(i_n(j)))*(180/%pi) + 180;

elseif clean(imag(i_n(j))) < 0 then // In 3rd quadrant
phase_i(j) = atan(imag(i_n(j))/real(i_n(j)))*(180/%pi) - 180;

else // On negative Re-axis
phase_i(j) = 180;

end
elseif clean(imag(i_n(j))) > 0 // On positive Im-axis

phase_i(j) = 90;
elseif clean(imag(i_n(j))) < 0 // On negative Im-axis

phase_i(j) = -90;
else // Origin: imag(i_n(j)) = real(i_n(j)) = 0

phase_i(j) = 0;
end
result(j,:) = [i_n(j), magn_i(j), phase_i(j)];

// Matrix collects computed data
j = j+1;

end

Complex numbers:Complex numbers:

demo, script (3/3) & printdemo, script (3/3) & print

�� The result is displayed The result is displayed
with the with the dispdisp()()
command with command with
everything included in everything included in
the argument vectorthe argument vector

�� Finally, the preliminary Finally, the preliminary
result is checkedresult is checked
as beforeas before

�� And the answer on the And the answer on the
Console:Console:

// Display summary:
//--------------------------
currents = ['i1 = ', 'i2 = ', 'i3 = ']'; // String matrix
statement = [' equals: ',' equals: ',' equals: ']'; // String matrix
disp(['CURRENTS IN COMPLEX AND POLAR FORM:']) // Headline
disp([currents, string(result(:,1)), statement,... // Display result

string(result(1:3,2)), string(result(1:3,3))])

// Check residual:
//----------------------
residual = clean(u - Z*i_n)' // Check initial results

In plain English:

i1 = 22.0 cos(ωt - 129.5º) A
i2 = 24.0 cos(ωt - 129,3º) A
i3 = 25.5 cos(ωt - 78.7º) A

CURRENTS IN COMPLEX AND POLAR FORM:

! i1 = -14-%i*17 equals: 22.022716 -129.47246 !
! !
! i2 = -15.2-%i*18.6 equals: 24.020824 -129.25584 !
! !
! i3 = 5-%i*25 equals: 25.495098 -78.690068 !

Numeric derivation (1/3):Numeric derivation (1/3):

derivative()derivative()
�� The derivative of the function The derivative of the function f(xf(x) is) is

defined as the limitdefined as the limit

f’(x) = lim
d�0

f(x + d) – f(x)
d

�� We can compute the numeric value of We can compute the numeric value of
f f ’’(x) at a point x using the function(x) at a point x using the function

derivative(f(x),x,opt(dderivative(f(x),x,opt(d))))

where where opt(dopt(d)) is an optional step size. is an optional step size.
However, ScilabHowever, Scilab’’s s Help BrowserHelp Browser
recommends using the recommends using the default valuedefault value

�� To the right the derivative for the To the right the derivative for the
earlier investigated function has been earlier investigated function has been
computed at five different pointscomputed at five different points

�� derivative()derivative() outputs a 5x5 matrix, in outputs a 5x5 matrix, in
which the diagonal is of interestwhich the diagonal is of interest

// derivative_1.sce

// Derivative of sin(x)/((x-0.1)^2+0.1) /
// calculated at selected points /

clear,clc;
funcprot(0);

deff('y=f(x)','y=sin(x)./((x-0.1)^2 + 0.1)');

x = [-2 -1 0 1 2]'; // Points of interest
disp(["Point", "Derivative"])
disp([x, diag(derivative(f,x))])

 !Point Derivative !

 - 2. - 0.2800316
 - 1. - 0.6663016
 0. 9.0909091
 1. - 1.2353251
 2. - 0.3632083

Numeric derivation (2/3):Numeric derivation (2/3):

script script

�� This script that plots This script that plots
the previous function the previous function
together with its together with its
derivativederivative

�� The equation and its The equation and its
derivative are defined derivative are defined
with separate with separate deffdeff()()
functionsfunctions

�� fplot2d()fplot2d() accepts the accepts the
same multiple plot same multiple plot
structure as was used structure as was used
earlier with earlier with plot2d()plot2d()

�� children(2) children(2) and and
children(3) children(3) are usedare used
because because children(1) children(1)
is reserved for legendis reserved for legend

// derivative_3.sce

// Plotting f(x) = sin(x)/((x-0.1)^2+0.1) /
// and its derivative /

clear,clc,clf;
funcprot(0)

x = -5:0.01:5; // Area of interest
d = 0.001; // Step size

// Define function & derivative:
// -----------------------------
deff('y1=f(x)','y1=sin(x)./((x-0.1)^2 + 0.1)'); // f(x)
deff('y2=g(x)','y2=((sin(x+d)./(((x+d)-0.1)^2 + 0.1))...
-(sin(x)./((x-0.1)^2 + 0.1)))/d'); // f'(x)

// Plot function & derivative:
// ---------------------------
rect = [-5,-3,5,11];
fplot2d(x,f,5,"011"," ",rect) // Plot function
fplot2d(x,g,2,"000") // Plot derivative
xgrid // Add grid to plot
xtitle('f(x) = sin(x)/((x-0.1)^2+0.1 AND ITS DERIVATIVE')
legend('Function f(x)','Derivative of f(x)')
a=gca();
a.children.children(2).thickness=2 // f'(x)) thickness
a.children.children(3).thickness=2 // f(x) thickness

Numeric derivation (3/3):Numeric derivation (3/3):

plotplot

A lesson from doing
this exercise is that
two deff() functions
in tandem, i.e. one
for f(x) followed by
one for f’(x) that
utilizes f(x), does not
work. On the
contrary, the attempt
may cause Scilab to
crash

Pay attention to the legend command in the script. It comes before the
related handle statements, but Scilab does not complain. Beats me...

Numeric integration (1/6):Numeric integration (1/6):

definite integraldefinite integral

�� Consider the definite integralConsider the definite integral

�� To solve the integral, first define To solve the integral, first define
the function y = the function y = f(xf(x), e.g. using), e.g. using
the the deffdeff()() functionfunction

�� The integral can then be The integral can then be
evaluated using Scilabevaluated using Scilab’’s s intgintg()()
function,* i.e.:function,* i.e.:

A = A = intg(a,b,fintg(a,b,f))

A = f(x) dx∫
a

b
 -->deff('y=f(x)', 'y=6*x^2');

 -->A = intg(-2,1,f)
 A =

 18.

-->A=intg(0, 2*%pi, f)
 !--error 24
 Convergence problem...

-->deff('y=f(x)', 'y=sin(x)');

-->A = intg(%pi/4, 3*%pi/4, f)
A =

1.4142136

Change the
integration limits to
0 and 2*%pi, and
this is what you get

*) The function
integrate() can be more
useful in some cases.
Check with Help

Numeric integration (2/6): Numeric integration (2/6):

length of an arclength of an arc

�� The length of an arc The length of an arc f(xf(x),),
between points a and b, is given between points a and b, is given
by the definite integralby the definite integral

�� LetLet’’s compute the length of s compute the length of
f(xf(x) = x) = x33/24 + 2x/24 + 2x--11 from x=2 to from x=2 to
x=3x=3

�� The task requires manual The task requires manual
derivation, which yieldsderivation, which yields

f f ’’ (x) = x(x) = x22/8 /8 -- 2x2x--22

L = {1 + [f ’(x)] 2} 1/2 dx∫
a

b -->deff('y=g(x)','y=sqrt(1+(x^2/8-2*x^(-2))^2)');

-->L=intg(2,3,g)
L =

1.125

-->L=intg(3,4,g)
L =

1.7083333

Numeric integration (3/6):Numeric integration (3/6):

double integral, principledouble integral, principle

�� The function The function int2dint2d ()() computes computes
the 2D area integral of a the 2D area integral of a
function function f(x,yf(x,y) over a region) over a region
consisting of N trianglesconsisting of N triangles

�� x and y must therefore be x and y must therefore be
defined through triangulation defined through triangulation
matrices X and Y, after which matrices X and Y, after which
the command isthe command is

[[I,errI,err] = int2d] = int2d (X,Y,f)(X,Y,f) , ,

and Scilab returns the and Scilab returns the
integration variable integration variable II and an and an
estimation of the error, estimation of the error, errerr
(not mandatory)(not mandatory)

�� The triangles are ABC and ACD, The triangles are ABC and ACD,
as shown in the picture. as shown in the picture.
Triangle elements are inserted Triangle elements are inserted
columncolumn--wise in the matrices wise in the matrices

I = f(x,y) dx dy∫
c

d

∫
a

b

A=a,c B=b,c

D=a,d C=b,d

x

y

d

c

a b

ACD
ABC

a a
X = b b ,

b a

c c
Y = c d

d d

ABC ACD ABC ACD

Numeric integration (4/6):Numeric integration (4/6):

double integral, demodouble integral, demo

�� LetLet’’s compute the double s compute the double
integralintegral

�� By looking at the integration By looking at the integration
limits of the function we find limits of the function we find
the triangulation matrices X and the triangulation matrices X and
Y:Y:

-->deff('z=f(x,y)', 'z=y*cos(x)+x*sin(y)');

-->X = [0 %pi %pi; 0 %pi 0]‘
X =

0. 0.
3.1415927 3.1415927
3.1415927 0.

-->Y = [%pi/2 %pi/2 2*%pi; %pi/2 2*%pi 2*%pi]‘
Y =

1.5707963 1.5707963
1.5707963 6.2831853
6.2831853 6.2831853

-->[I,err] = int2d(X,Y,f)
err =

9.805D-11
I =

- 4.9348022

0 0
X = π π ,

π 0

π/2 π/2
Y = π/2 2π

2π 2π

I = (y cos(x) + x sin(y)) dx dy∫
π/2

2π

∫
0

π

Numeric integration (5/6):Numeric integration (5/6):

double integral, plotdouble integral, plot

// double_integral_plot.sce

// Plot the function z = y*sin(x) + x*sin(y) /
// over the rectangle 0<x<%pi, %pi/2<y<2*%pi /

clear,clc,clf;

x=linspace(0,%pi,30); // Linear x axis
y=linspace(%pi/2,2*%pi,30); // Ditto y axis
[X,Y]=meshgrid(x,y); // Surface mesh
Z=(Y.*cos(X)+X.*sin(Y)); // 3D surface equation
surf(X,Y,Z) // Plot 3D surface
xtitle('f(x,y) = y*cos(x) + x*sin(y),… // Add title

with 0<x<%pi, %pi/2<y<2*%pi')

The plot of f(x,y) = y*cos(x)
+ x*sin(y) is here done with
a separate script:

The figure has been edited
with the Figure Editor

Numeric integration (6/6):Numeric integration (6/6):

double integral, checkdouble integral, check

�� We can check the computed We can check the computed
result using result using the other possible the other possible
triangulationtriangulation

�� Now we get the triangulation Now we get the triangulation
matrices shown herematrices shown here

�� Plugging these matrices Plugging these matrices
into the Console gives the into the Console gives the
following result:following result:

a b
X = b b ,

a a

c c
Y = c d

d d

A=a,c B=b,c

D=a,d C=b,d

x

y

d

c

a b

ABD

BCD

-->X=[0 %pi 0; %pi %pi 0]‘;

-->Y=[%pi/2 %pi/2 2*%pi; %pi/2 2*%pi 2*%pi]‘;

-->[I,err]=int2d(X,Y,f)
err =

9.887D-11
I =

- 4.9348022

Same result, but a small difference
in the estimated error

Ordinary differential Ordinary differential

equations (equations (ODEsODEs): ode()*): ode()*

�� This simplest call for solving This simplest call for solving ODEsODEs is is ode()ode() thatthat has the has the
general form: general form:

y = ode(y0,t0,t,f(t,y))y = ode(y0,t0,t,f(t,y))

wherewhere
–– y0y0 = initial condition (normally a column vector)= initial condition (normally a column vector)
–– t0t0 = initial time (normally 0)= initial time (normally 0)
–– tt = vector of instances for which the solution has to be = vector of instances for which the solution has to be

computed, e.g. t = [0:0.01:10]computed, e.g. t = [0:0.01:10]
–– f(t,yf(t,y)) = function for which the solution has to be found, often = function for which the solution has to be found, often

stated as [stated as [ydotydot] =] = f(t,yf(t,y). Here). Here tt is a scalar, is a scalar, yy a column vector, a column vector,
and and [[ydotydot]] a column vector with values of the derivativea column vector with values of the derivative

�� ode()ode() can also have optional arguments. See can also have optional arguments. See HelpHelp for for
detailsdetails

*) Sallet, G.: Ordinary Differential Equations with Scilab, <http://www.math.
univ-metz.fr/~sallet/ODE_Scilab.pdf> is an “old” but good text.

// first-order_ODE.sce

// Solve the equation x'+x^2 = t /
// for x(0) = 0 /

clear,clc,clf;
funcprot(0)

deff('y=f(t,x)','y=-x^2+t') // Define function
t=linspace(0,20); // Abscissa
x=ode(1,0,t,f); // Compute equation
plot2d(t,x,style=5) // Plot
xtitle('dx/dt + x^2 = t','t','x')
xgrid a=gca();
a.children.children.thickness=2

FirstFirst--order order ODEsODEs: demo: demo

�� LetLet’’s find the solution for the firsts find the solution for the first--order homogenous ODEorder homogenous ODE
xx’’ + x+ x22 = t= t , ,

with the initial condition x(0) = 1. Plot the solution for t with the initial condition x(0) = 1. Plot the solution for t ϵϵ [0,20][0,20]
�� Start by rewriting the function as xStart by rewriting the function as x’’ = = --xx22 + t + t
�� Note how xNote how x’’ is designated y in the is designated y in the deffdeff()() argumentargument

In this case Scilab does not accept
numeric arguments of children

SecondSecond--order order ODEsODEs: :

introductionintroduction

�� Scilab only supports firstScilab only supports first--order order
differential equationsdifferential equations——as do other as do other
programs for numeric computingprograms for numeric computing

�� Higher order problems must be Higher order problems must be
reduced to reduced to firstfirst--order systemsorder systems, i.e. , i.e.
by shifting to by shifting to statestate--space space
representationrepresentation

�� The methodology runs according The methodology runs according
to the algorithm shown to the to the algorithm shown to the
rightright

�� A good treatment of stateA good treatment of state--space space
methods is e.g. Chapter 8 in methods is e.g. Chapter 8 in
Burns, R.S.: Burns, R.S.: Advanced Control Advanced Control
EngineeringEngineering, Butterworth, Butterworth--
Heinemann, 2001 Heinemann, 2001

Problem expressed as
second-order ODE

Select state variables

Substitute state
variables with zeroth-

order variables

Rewrite problem as
first-order state-space

equation system

Solve using Scilab’s
ode() function

SecondSecond--order order ODEsODEs: :

RLC circuit (1/5), the taskRLC circuit (1/5), the task
�� The task is to plot the output The task is to plot the output

voltage vvoltage v22 for the shown RLC for the shown RLC
circuit, whencircuit, when
–– U = 5VU = 5V
–– switch closes at t = 1switch closes at t = 1
–– R = 0.3 R = 0.3 ΩΩ
–– L = 0.5 HL = 0.5 H
–– C = 0.8 FC = 0.8 F

�� We can derive the following We can derive the following
secondsecond--order ODE for the order ODE for the
circuit:circuit:

LC + RC + v2(t) = v1(t)
d2v2(t) dv2(t)

dt2 dt

SecondSecond--order order ODEsODEs: :

RLC circuit (2/5), reduceRLC circuit (2/5), reduce
�� Simplify the equation for clarity:Simplify the equation for clarity:

LCvLCv22’’’’ + RCv+ RCv22’’ + v+ v22 = v= v11

�� Select Select vv22 and its derivative and its derivative vv22’’ as state variables, and substitute:as state variables, and substitute:

xx11 = v= v22 and and xx22 = v= v22’’ (= x(= x11’’))

�� With With vv11 substituted by substituted by uu , the first, the first--order ODE system becomes:order ODE system becomes:

xx11’’ = + 0= + 0··xx11 + 1+ 1··xx22 + 0+ 0··u u (simpler:(simpler: xx11’’ = x= x22))

xx22’’ ==

�� Which gives the stateWhich gives the state--space expression that we are looking for:space expression that we are looking for:

– x1 – x2 + u
1 R 1

RC L LC

= + u 1 R 1

RC L LC

x1’ 0 1 x1 0

x2’ – – x2

SecondSecond--order order ODEsODEs::

RLC circuit (3/5), scriptRLC circuit (3/5), script

Recall the discussion
in connection with Ex
2-3: We are working
with a matrix
expression of the type

x’ = Ax + bu

All of these factors
can be seen here,
with x’ being denoted
ss and x substituted
by y

// RLC_ODE.sce

// Simulation of a series RCL circuit with /
// 5V step input voltage at t = 1s /

clear,clc,clf;

// Define circuit components:
//--------------------------------------

R = 0.3; // Resistance (Ohm, V/A)
L = 0.5; // Inductance (Henry, Vs/A)
C = 0.8; // Capacitance (Farad, As)

// Define space-state equations & input signal:
//--
A = [0 1; -1/(L*C) -R/L]; // System matrix
B = [0; 1/(L*C)]; // Input matrix
deff('[ut]=u(t)','ut=2.5*(1+sign(t-1))'); // Step input signal
deff('[ss]=RLC(t,y)','ss=A*y+B*u(t)'); // Space-state expression

SecondSecond--order order ODEsODEs::

RLC circuit (4/5), scriptRLC circuit (4/5), script
The ode() function
computes our
differential equation by
using the RLC state-
space expression of the
second deff() function.
Calling parameters are
y0 and t0

Note the plot command
(new way of doing
plot2d())

// Compute using ode(), which calls previous deff() function:
//---
out0 = [0;0]; // Initial output voltage & d(v2)/dt = 0
t0 = 0; // Initial time = 0
Time = [0:0.05:10]; // Time as abscissa
State = ode(out0,t0,Time,RLC); // State variable vector (v2',v2)

// Plot and add title & grid:
//-----------------------------------
plot2d(Time,[State',u(Time)']); // Note transposed arguments!

xtitle('Series RLC circuit with step input voltage',...
'Time (s)','Input + Output voltage v2(t) & d(v2(t))/dt')

xgrid

// Edit plot:
//--------------
a=gca();
a.children.children.thickness=2 // Make all graphs thicker

// Add legend (must come after handle commands):
//---
legend('Output voltage, v2(t)','d(v2(t))/dt','Input signal’,4)

Handle commands
come before the legend
(in this case Scilab gives
an error message if you
try it the other way)

SecondSecond--order order ODEsODEs: :

RLC circuit (5/5), plotRLC circuit (5/5), plot

The plot shows that the
circuit is undercritically
damped. Change the
resistor value to 1.5 Ω,
and it becomes critical. It
is overcritical for still
higher values of R

Handle commands could
be used to edit the figure
further. I did not do it
because the main point
with this demo is to solve
a second-order ODE

odeoptionsodeoptions()()

The command

%ODEOPTIONS = odeoptions()

opens the GUI shown right. With
the help of it you can change
parameters for solving differential
equations. Examples:

• h0 = size of first step
• hmax = maximum step size
• hmin = minimum step size
• mxstep = minimum # of steps

Check with Help for details

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

14. Examples, Set 5 14. Examples, Set 5

The examples give additional The examples give additional
insight into working with math insight into working with math
on Scilabon Scilab

Return to Contents

Example 5Example 5--1: 1:

solving an equation (1/3)solving an equation (1/3)

�� This demo is based on This demo is based on MMääkelkelää

�� LetLet’’s solve the equations solve the equation

ln(xln(x) = x) = x22--7x+107x+10

�� We begin by plotting it (note We begin by plotting it (note
how the multiple plot command how the multiple plot command
is constructed)is constructed)

�� The plot reveals that there are The plot reveals that there are
two solutions, at xtwo solutions, at x11 ≈≈ 2 and 2 and
xx22 ≈≈ 5.55.5

�� You can see the roots more You can see the roots more
exactly by using the Graphics exactly by using the Graphics
WindowWindow’’s s zoom functionzoom function (next (next
slide)slide)

 -->x = (0.01:0.01:8)';

 -->plot2d(x,[log(x), x.^2-7*x+10])

Ex 5Ex 5--1: solving an 1: solving an

equation (2/3)equation (2/3)

�� The zoom function gives more precise values for the roots:The zoom function gives more precise values for the roots:
xx11 = 1.81 and x= 1.81 and x22 = 5.49= 5.49

�� To improve the accuracy even more we can calculate the roots witTo improve the accuracy even more we can calculate the roots with h
the the fsolvefsolve()() function (next slide)function (next slide)

Ex 5Ex 5--1: solving an 1: solving an

equation (3/3)equation (3/3)

�� fsolvefsolve()() delivers the ultimate delivers the ultimate
answeranswer

�� We can also check the error of We can also check the error of
the result. As shown, it is close the result. As shown, it is close
to zeroto zero

�� Lessons learnedLessons learned: Precise zoom : Precise zoom
in the Graphics Window in the Graphics Window
produces satisfactory accuracy produces satisfactory accuracy
for most practical engineering for most practical engineering
purposes (two decimals), purposes (two decimals),
considering that an old considering that an old
engineering adage says that engineering adage says that
factors that influences the result factors that influences the result
by less than 10% can be by less than 10% can be
forgotten forgotten

-->deff('y=f(x)', 'y=log(x)-(x^2-7*x+10)');

-->x1=fsolve(1.8,f)
x1 =

1.8132512

-->x2=fsolve(5.5,f)
x2 =

5.4881107

-->f(x1),f(x2)
ans =

- 7.772D-16
ans =

- 4.441D-16

Check

ExxampleExxample 55--2: ODE, 2: ODE,

series RLC circuit (1/5)series RLC circuit (1/5)
�� This example is a modification of This example is a modification of

the earlier RLC circuit and its the earlier RLC circuit and its
secondsecond--order ODEorder ODE

�� However, we now want to define However, we now want to define
the current the current i(ti(t) and charge) and charge q(tq(t))
for a sinusoidal input signal and for a sinusoidal input signal and
initial conditions i(0) = 0 and q(0) initial conditions i(0) = 0 and q(0)
= 0 = 0

�� KirchoffKirchoff’’ss second law gives:second law gives:

wherewhere

di(t) 1

dt C
L + Ri(t) + q(t) = u(t)

q = i(t) dt∫
0

t

= i
dt

dq
or:

R = 0.3 Ω
L = 0.5 H
C = 0.8 F
u(t) = sin(5t)

Ex 5Ex 5--2: ODE, series RLC 2: ODE, series RLC

circuit (2/5)circuit (2/5)

�� No substitutions are required in this case since No substitutions are required in this case since qq and its derivative and its derivative ii
are state variables. The firstare state variables. The first--order equation system is therefore:order equation system is therefore:

�� Which gives the following stateWhich gives the following state--space expression:space expression:

– q – i + u
1 R 1

LC L L

q’ = i

i’ =

= + u 1 R 1

LC L L

q’ 0 1 q 0

i’ – – i

Remember: x’ = Ax + Bu

Ex 5Ex 5--2: ODE, series RLC 2: ODE, series RLC

circuit (3/5), scriptcircuit (3/5), script

// series_RLC_ODE.sce

// Simulation of the current i(t) and charge q(t) in /
// a series RCL circuit with sinusoidal input voltage /
// and initial conditions i(0)=0, q(0)=0. /
// Legend: ss = state-space /

clear;clc,clf;

// Define circuit components:
//--------------------------------------
R = 0.3; // Resistance (Ohm)
L = 0.5; // Inductance (Henry)
C = 0.8; // Capacitance (Farad)

// Define state-space equations & input signal:
//--
A = [0 1; -1/(L*C) -R/L]; // SS system matrix
B = [0; 1/L]; // SS input matrix
deff('[ut]=u(t)','ut=sin(5*t)'); // Sinusoidal input
deff('[ss]=RLC(t,y)',‘ss=A*y+B*u(t)'); // SS expression

There is nothing new
here compared to
the previous
RLC/second-order
ODE

Ex 5Ex 5--2: ODE, series RLC 2: ODE, series RLC

circuit (4/5), scriptcircuit (4/5), script

// Compute using ode(), which calls the previous deff() function:
//---
y0 = [0;0]; // Initial current & charge = 0
t0 = 0; // Initial time = 0
Time = [0:0.05:8]; // Time as abscissa
Y = ode(y0,t0,Time,RLC); // Y = state variable vector (i,q)

// Plot current & charge:
//-------------------------------
plot2d(Time,Y',[2 5],'024'); // Plot state vectors, note transposed Y

xtitle('Series RLC circuit with sinusoidal input voltage',...
'Time','Current & Charge')

xgrid
legend('Charge, q(t)','Current, i(t)')

The ode() is the
same as in the
previous RLC case

Check the plot
argument ‘024’
and its effect on
the plot (next
slide)

Ex 5Ex 5--2: ODE, series RLC 2: ODE, series RLC

circuit (5/5), plotcircuit (5/5), plot

�� This is the plot for the shown This is the plot for the shown
component values. There are component values. There are
initial fluctuations before the initial fluctuations before the
situation begins to stabilizesituation begins to stabilize

�� This is the plot for more This is the plot for more
realistic component values of realistic component values of
R = 3 kR = 3 kΩΩ, L = 0.5 , L = 0.5 µµH, and C H, and C
= 0.8 = 0.8 µµF F

�� There used to be problems There used to be problems
with the latter case (Scilab with the latter case (Scilab
5.1.1), but these have 5.1.1), but these have
obviously been solvedobviously been solved

Example 5Example 5--3: System of 3: System of

firstfirst--order order ODEsODEs
�� This example is modified from This example is modified from PovyPovy (pp. 66(pp. 66--67, 67, PovyPovy also has an also has an

animation version on pp. 67animation version on pp. 67--68, but it causes Scilab to 68, but it causes Scilab to crashcrash). The). The
example finishes with and interesting example finishes with and interesting plot2d()plot2d() commandcommand

�� The task is to plot the The task is to plot the slope (vector) fieldslope (vector) field for the following system of for the following system of
firstfirst--order order ODEsODEs ::

xx’’ = y= y

yy’’ = = --x x –– yy

together with a single together with a single phase portraitphase portrait with the initial trajectory with the initial trajectory x(0) = x(0) =
1 1 and and y(0) = 1y(0) = 1

�� The script can utilize either the ODE system (as The script can utilize either the ODE system (as PovyPovy has done) or has done) or
the statethe state--space representation. Wespace representation. We’’ll select the latter, in line with ll select the latter, in line with
earlier examplesearlier examples

x’ 0 1 x
y’ -1 -1 y=

Ex 5Ex 5--3: 3:

scriptscript
// ode_phase_plane_m.sce

// The scripts plot the phase plane of the /
// equation system x'=y, y'=-x-y together with /
// a single phase portrait that satisfies the /
// initial condition x(0)=1, y(0)=1 /

clear,clc,clf;
funcprot(0);

// First order transformation:
//--------------------------------------
A = [0 1;-1 -1]; // State vector
deff('[ss]=firstorder(t,x)',‘ss=A*x');

// Create & draw slope (vector) field:
//---
z = linspace(-1.5,1.5,10);
fchamp(firstorder,0,z,z) // Draw vector field

// Create phase portrait:
//-------------------------------
x0 = [1;1]; // Initial condition
t = linspace(0,30,300);
[x] = ode(x0,0,t,firstorder); // [x]=state variable vector

// with x=x(1), y=x(2)

// Plot phase portrait on slope field:
//---
plot2d(x(1,:),x(2,:),5,'004')

xtitle('Phase plane of dx/dt=y, dy/dt=-x-y')

The state-space function
is named firstorder()

The vector field is drawn
with fchamp()

ode() has only one
argument (and accepts
only one name) for the
initial condition � x and
y are renamed x(1) and
x(2) respectively, as
shown in the arguments
for plot2d()

Ex 5Ex 5--3: plot3: plot

Full plot

Phase portrait
with initial
condition [1,1]

Zoomed center
area

Scilab does not put the “haircross” at
the origin, which is just as well

Example 5Example 5--4: Simpson4: Simpson’’s s

rule, the taskrule, the task
�� This example demonstrates integration of double integrals using This example demonstrates integration of double integrals using

SimpsonSimpson’’s rule for calculating double integralss rule for calculating double integrals
�� LetLet’’s first define a subroutine for s first define a subroutine for

SimpsonSimpson’’s rule and then add code s rule and then add code
for the function, the area integral for the function, the area integral
of which should be calculatedof which should be calculated

�� In this case weIn this case we’’ll repeat the earlier ll repeat the earlier
functionfunction

but the script can easily be modified but the script can easily be modified
for other algebraic expressionsfor other algebraic expressions

�� There are numerous variants of SimpsonThere are numerous variants of Simpson’’s rule for double integrals s rule for double integrals
(for an accurate algorithm, see (for an accurate algorithm, see FairesFaires, Burden: , Burden: Numerical MethodsNumerical Methods, ,
3rd ed., Brooks Cole 2002). The one given on the next slide is b3rd ed., Brooks Cole 2002). The one given on the next slide is based ased
on on UrrozUrroz and known as Simpsonand known as Simpson’’s 1/9 rules 1/9 rule

I = (y cos(x) + x sin(y)) dx dy,∫
π/2

2π

∫
0

π

Ex 5Ex 5--4: Simpson4: Simpson’’s rule, s rule,

algorithmalgorithm

where we calculate our function f(x,y) in a rectangular domain R
= {a<x<b, c<y<d}

Here x is divided into n and y into m even parts, so that:

Furthermore:

Si j = fi-1 j-1 + fi-1 j+1 + fi+1 j-1 + fi+1 j+1 +

4(fi-1 j + fi j-1 + fi+1 j + fi j+1) + 16 fi j

b - a

n
Δx = ,

d - c

m
Δy =

I =
∆x ∆y

9
Σ Σ Si j

n m

i = 2
i = i+2

j = 2
j = j+2

Ex 5Ex 5--4: Simpson4: Simpson’’s rule, s rule,

scriptscript

The script is built in four
steps:

1. Overall headline
comments for the
program

2. UDF declaration
followed by clarifying
comments

3. Body of UDF (next
slide)

4. The code for f(x,y) that
calls the UDF (two slides
down)

// double_integration_simpson.sce

//---/
// The program calculates the double integral of the /

// function f(x,y) = y*cos(x)+x*sin(y); by calling the /
// subroutine simpson_double(x0,xn,n,y0,ym,m,f) /
//---/

clear,clc;

function [integral] = simpson_double(x0,xn,n,y0,ym,m,f)

// The function calculates the double integral of /
// the function f(x,y) in the region x0<x<xn, /
// y0<y<ym using Simpson's 1/9 rule. The x- and /
// y- ranges are divided into n and m subintervals, /
// respectively, where both m and n must be even. /
// The function modifies m and n if they are odd /

Ex 5Ex 5--4: Simpson4: Simpson’’s rule, s rule,

scriptscript
This is the body of the
UDF

It starts by checking and
(if necessary) correcting
the input parameters n
and m

Here we again meet the
function feval(). It returns
a matrix z(i,j) =
f(x(i),y(j))

Heart of UDF: The double
summation that produces
Sij before forming the final
answer (output argument)

// Check that n and m are even, correct as needed:
//---
if modulo(n,2) <> 0 then // Check that n is even;
n = n + 1 // if not, add one

end
if modulo(m,2) <> 0 then // Check that m is even;
m = m + 1 // if not, add one

end

// Define x and y increments and region:
//--
Dx = (xn-x0)/n // Define delta x
Dy = (ym-y0)/m // Define delta y
x=[x0:Dx:xn] // Region and increments of x
y=[y0:Dy:ym] // Region and increments of y

// Calculate double integral:
//------------------------------------
z=feval(x,y,f) // Matrix z(i,j)=f(x(i),y(j))
Sij = 0 // Initiate Sij
for i = 2:2:n // Sum Sij along x-axis
for j = 2:2:m // Sum Sij along y-axis
Sij = Sij + z(i-1,j-1)+z(i-1,j+1)+z(i+1,j-1)+z(i+1,j+1)...
+4*(z(i-1,j)+z(i,j-1)+z(i,j+1)+z(i+1,j))+16*z(i,j)

end
end
integral = (Dx*Dy/9)* Sij // Evaluate integral

endfunction

Ex 5Ex 5--4: Simpson4: Simpson’’s rule, s rule,

script & resultscript & result
Now comes the function f(x,y)
that we want to integrate. We
start by defining integration limits
and steps

An interesting problem emerges:
How should one define the calling
argument f(x,y)? If it is entered
as f(x,y)=y*cos(x)+ x*sin(y),
Scilab will complain that x and y
are not defined. The solution is
deff()

And finally: the answer as
displayed on the Message box
(the last digit of the earlier demo
was more accurate)

// Define integration parameters:
//--
x0 = 0; // Lower bound for x
xn = %pi; // Upper bound for x
n = 100; // # of subintervals of x
y0 = %pi/2; // Lower bound for y
ym = 2*%pi; // Upper bound for y
m = 100; // # of subintervals of y

// Define function & calculate integral:
//---
deff('[z]=f(x,y)','z = y*cos(x)+x*sin(y)');
I = simpson_double(x0,xn,n,y0,ym,m,f)
messagebox('The result of the double integral is:…

'+string(I))

The exact answer is
-π2/2 = -4.934802199...

Ex 5Ex 5--4: Simpson4: Simpson’’s rule, s rule,

discussiondiscussion

�� I had big problems with this one. Scilab repeatedly insisted on I had big problems with this one. Scilab repeatedly insisted on
coming up with the wrong answer. I tried to find the error in secoming up with the wrong answer. I tried to find the error in several veral
waysways::
–– Checked manually that the earlier answer (Checked manually that the earlier answer (-- 4.9348022, or –π2/2) was) was

correctcorrect
–– Changed trigonometric functions to exponential equivalents at noChanged trigonometric functions to exponential equivalents at no availavail
–– Checked the algorithm by comparing with solved examples from matChecked the algorithm by comparing with solved examples from math h

and and MatlabMatlab booksbooks

�� Finally, when I plugged in the equation in the now several timesFinally, when I plugged in the equation in the now several times
changed script, changed script, the result came out rightthe result came out right. Most likely I had written . Most likely I had written
sin(x)sin(x) instead of instead of cos(xcos(x))..........

�� Lessons learnedLessons learned: It: It’’s hard to see bugs in ones hard to see bugs in one’’s own programs own program
�� Another thing: The script uses Another thing: The script uses nested loopsnested loops ((for i = ...; for j = ...; ... for i = ...; for j = ...; ...

end; end;end; end;). This). This should be avoided in should be avoided in ScilabScilab as far as possible, as far as possible,
because the performance is poor in such casesbecause the performance is poor in such cases

�

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

15. Working with GUIs15. Working with GUIs

The term GUI relates both to ScilabThe term GUI relates both to Scilab’’s s
embedded windows and to user embedded windows and to user
defined interactive windows defined interactive windows

Return to Contents

IntroductionIntroduction

�� ScilabScilab’’s GUI interface was updated with version 5. Old tutorials (e.g. s GUI interface was updated with version 5. Old tutorials (e.g.
Campbell et al.) are therefore of limited valueCampbell et al.) are therefore of limited value

�� Brief discussions of GUIs can be found in Brief discussions of GUIs can be found in KubitzkiKubitzki and in and in AntonelliAntonelli & &
ChiaveriniChiaverini (you can read Scilab scripts in German and Italian even if (you can read Scilab scripts in German and Italian even if
you donyou don’’t speak the language) t speak the language)

�� Although the GUI interface has improved, the Scilab team still cAlthough the GUI interface has improved, the Scilab team still cannot annot
be proud of their achievementbe proud of their achievement

�� GUIs is a large subject; the Help Browser identifies about 50 GUGUIs is a large subject; the Help Browser identifies about 50 GUII--
related functions. Werelated functions. We’’ll be able to cover only a part of them (as ll be able to cover only a part of them (as
always)always)

�� We have earlier seen cases with the dialogue box (We have earlier seen cases with the dialogue box (x_dialogx_dialog()() in Ex. in Ex.
11--3) and the 3) and the messageboxmessagebox ((messageboxmessagebox()() in Ex. 5in Ex. 5--4)4)

�� The first discussion below is about how to tailor ScilabThe first discussion below is about how to tailor Scilab’’s windowss windows
�� Following that we shall look at some user defined dialog windowsFollowing that we shall look at some user defined dialog windows. A . A

““realreal”” GUI is presented in Example 6GUI is presented in Example 6--11

Tailoring windows (1/2)Tailoring windows (1/2)

deactivates buttons or menus created bydeactivates buttons or menus created by
addmenuaddmenu()()

unsetmenuunsetmenu()()

activates buttons or menus created byactivates buttons or menus created by
addmenuaddmenu()()

setmenusetmenu()()

deletes buttons or menus created bydeletes buttons or menus created by
addmenuaddmenu()()

delmenudelmenu()()

adds new buttons or menus in the main adds new buttons or menus in the main
and/or Graphics Window command panelsand/or Graphics Window command panels

AddmenuAddmenu (<(<gwingwin>,button, >,button,
<optional arguments>)<optional arguments>)

There are four main functions for tailoring either the Console or the
Graphics Window:

�� The numeric The numeric gwingwin argument, if present, tells on which Graphics argument, if present, tells on which Graphics
Window the button should be installed Window the button should be installed

�� The The buttonbutton argument is a character string that defines a shortcut on argument is a character string that defines a shortcut on
the the menu barmenu bar

Tailoring windows (2/3)Tailoring windows (2/3)

�� Optional arguments are:Optional arguments are:
–– submenussubmenus character character string with names of submenu items string with names of submenu items
–– actionaction definition list of the type definition list of the type action=action=list(flaglist(flag, proc. name), proc. name)

�� This is not the whole truth. The book by Das, which is a collectThis is not the whole truth. The book by Das, which is a collection of ion of
ScilabScilab’’s s HelpHelp function texts, contains more hintsfunction texts, contains more hints

�� As a demonstration of the above said, here is a command that addAs a demonstration of the above said, here is a command that adds s
the menu the menu GraphicsGraphics, with submenus , with submenus New WindowNew Window and and Clear Clear
WindowWindow, to the Console, to the Console’’s menu bar:s menu bar:

-->addmenu('Graphics',['New window','Clear window','Close window'])

-->Graphics = ['scf()','clf()','xdel()']
Graphics =

!scf() clf() xdel() !

Create

Tailoring windows (3/3)Tailoring windows (3/3)

�� You can convince yourself that the added Console menu works by You can convince yourself that the added Console menu works by
clicking on clicking on ““New windowNew window”” to open the Graphics Window and click on to open the Graphics Window and click on
““Close windowClose window”” to close it againto close it again

�� As the following steps we can deactivate the created menu by theAs the following steps we can deactivate the created menu by the
command command unsetmenuunsetmenu()() and delete it with and delete it with delmenudelmenu()(): :

Interacting with the Interacting with the

Graphics Window (1/4)Graphics Window (1/4)
�� Scilab has numerous commands for interacting with the Graphics Scilab has numerous commands for interacting with the Graphics

Window; among these are:Window; among these are:

�� The script below is adapted fromThe script below is adapted from Help/Help/xgetmousexgetmouse. It draws a . It draws a
rectangle on the Graphics Window. The rectangle starts off at threctangle on the Graphics Window. The rectangle starts off at the e
location of the mouse pointer at the first click of the leftlocation of the mouse pointer at the first click of the left--hand hand
button, and freezes the rectangle at the second clickbutton, and freezes the rectangle at the second click

Removes the handlerRemoves the handlerseteventhandlerseteventhandler (' '(' '))

Sets an event handler for the current Graphics Sets an event handler for the current Graphics
WindowWindowseteventhandlerseteventhandler ()()

Returns the current position of the mouseReturns the current position of the mousexgetmousexgetmouse ()()

Waits for a mouse click, returns a) the number of Waits for a mouse click, returns a) the number of
window where the click occurs, b) position of the window where the click occurs, b) position of the
click, and c) the number of the mouse button used click, and c) the number of the mouse button used
(left, center, right)(left, center, right)

xclickxclick ()()

Interacting with the GW Interacting with the GW

(2/4): script (1/2)(2/4): script (1/2)

// rectangle_selection.sce

// The script demonstrates the use of the mouse-related /
// commands xclick(), xgetmouse() and xrect() when they /
// are used to draw a rectangle in the Graphics Window /

clear,clc,clf;

// Initialize drawing process:
//--------------------------------------
a = gca(); // Get current Axes
a.data_bounds = [0 0;100 100]; // Boundaries for x & y coordinates
xtitle('Click left mouse button & drag to create a rectangle. ...
Click a second time to freeze') // Display instruction

show_window(); // Put Graphics Window on top

// Start drawing rectangle in the Graphics Window:
//--
[button,x_coord,y_coord] = xclick(); // Point of mouse button click
xrect(x_coord,y_coord,0,0)

// Start rectangle at mouse pointer x & y coordinates
rectangle = gce(); // Get rectangle handle
mouse = [x_coord,y_coord,-1]; // Mouse pointer 1x3 matrix

Look for a description of
data_bounds under
Help/axes_properties
(not very helpful)

According to Help/
xclick the first vector
element should be
numeric, but Scilab
requires a name

Look at the arguments
of xrect(), it is those
that we later play with

The third vector
element is set to -1, or
mouse pointer has
moved (see Help/event
handler functions)

Interacting with the GW Interacting with the GW

(3/4): script (2/2)(3/4): script (2/2)

// Execute mouse commands for rectangle:
//---
while mouse(3) == -1 do // Repeat until second click
mouse = xgetmouse(); // Check mouse position
x_coord1 = mouse(1); // Mouse location in x-plane
y_coord1 = mouse(2); // Mouse location in y-plane
x_origin = min(x_coord,x_coord1); // Define x origin
y_origin = max(y_coord,y_coord1); // Define y origin
width = abs(x_coord-x_coord1); // Define width of rectangle
height = abs(y_coord-y_coord1); // Define height of rectangle
rectangle.data = [x_origin,y_origin,width,height];

// Change rectangle origin, width and height
end

The while-do-end loop runs forever unless
a second mouse button click changes the
condition mouse(3)==-1. Should a
timeout condition be added to the loop?

The loop starts by
checking the status
of the mouse. Recall
from the previous
slide the vector
mouse = [x_coord,
y_coord,-1]

Following that, new
data are calculated
for the rectangle

The finishing touch is
to define new handle
values (see xrect()
arguments above)

Interacting with the GW Interacting with the GW

(4/4): what it does(4/4): what it does

2) Put the cursor somewhere,
click and drag, and click a
second time to freeze

1) The Graphics Window with
instruction pops up, as required by
the show_window() command

What do you do with this
feature? Beats me....

GUI demo 1: Introducing GUI demo 1: Introducing

figure() & figure() & uicontroluicontrol()()
�� Here Here figure()figure() generates the figure (opens generates the figure (opens

the Graphics Window),the Graphics Window), uicontroluicontrol()()
creates the graphical user interface object creates the graphical user interface object
in the GW, and two of the items on the list in the GW, and two of the items on the list
are highlighted with are highlighted with set()set()

�� The central argument in this case is The central argument in this case is
’’listboxlistbox’’, which defines the list, which defines the list

Note the Note the scrollbarscrollbar, it pops , it pops
up when the height is too up when the height is too
small (100) for all itemssmall (100) for all items

// uicontrol-1.sce /

// A basic GUI exercise /

clc; xdel();

f = figure(); // Create a figure
h = uicontrol(f,'style','listbox',.. // Create a listbox,…

'position',[50 300 150 100]); // h = handle
set(h,'string',"Alpha|Beta|Gamma.. // Fill the list

|Delta|Epsilon|Zeta|Eta|Tau");
set(h,'value',[1 3]); // Highlight items 1 and 3 in the list

GUIs: popGUIs: pop--up window up window

functionsfunctions

�� Scilab has several commands for creating popScilab has several commands for creating pop--up windows. up windows.
Note that Note that x_messagex_message()() is obsoleteis obsolete and will not work in Scilab and will not work in Scilab
5.2 and later versions; 5.2 and later versions; messageboxmessagebox()() has to be used instead:has to be used instead:

Vector/matrix input window (Demo 2, Case 6)Vector/matrix input window (Demo 2, Case 6)x_matrixx_matrix()()

As previous but with multiple choices (Demo2, Case 5)As previous but with multiple choices (Demo2, Case 5)x_choicesx_choices()()

Message presentation (see Demo 2, Cases 1, 2 & 7)Message presentation (see Demo 2, Cases 1, 2 & 7)messageboxmessagebox()()

Alternative selectable from list (Demo 2, Case 3) Alternative selectable from list (Demo 2, Case 3) x_choosex_choose()()

Window with multiWindow with multi--line dialog (Demo 2, Case 4)line dialog (Demo 2, Case 4)x_dialogx_dialog()()

As previous but with multiple string parametersAs previous but with multiple string parametersx_mdialogx_mdialog()()

Creates a list of objects (Demo 2, Case 5)Creates a list of objects (Demo 2, Case 5)list()*list()*

FeatureFeatureCommandCommand

*) Matlab’s struct() is also available in Scilab

GUIs: GUIs: messageboxmessagebox()()

messagebox (“message”, “title”, “icon”, [“buttons”], “modal”)

The syntax of the messagebox() function is the following:

Message that you
want to convey

Box title (the
default is “Scilab

Message”)

Definable icons are:
“error”, “hourglass”, “info”, “passwd”, “question”, and “warning”

Icon to be placed
in the box

1xn vector of strings
with button legends

“modal” tells Scilab to
wait for user actions

(otherwise 0 is returned)

GUI demo 2: creating GUI demo 2: creating

poppop--up windows (1/5)up windows (1/5)

Case 1: Recall that this pop-up window
was created by adding the command
messagebox=(‘The result of the
double integral is: ’+string(I)) at the
end of the script of Example 5-4

Case 2:

 -->m = messagebox('Division by 0: Continue?','WARNING',['Yes' 'No'])
 m =

 0.

Default title

Case 2 is wrong! The Yes/No buttons
have no meaning since the case is not
declared “modal” and Scilab by design
returns the default zero (0)

Default icon

 -->answer=evstr(x_dialog('Input matrix',['1 0';'0 1']))
 answer =

 9. 8. 7.
 1. 2. 3.
 6. 5. 4.

GUI demo 2: creating GUI demo 2: creating

poppop--up windows (2/5)up windows (2/5)

Case 3: x_choose() with four alternatives

 -->ans=x_choose(['Alpha','Beta','Delta','Gamma'],'Double-click on one:')
 ans =

 2.

Case 4: x_dialog() with input transformed
from string to matrix

Change matrix as needed, click OK

 -->answer
 answer =

 3. 2. 1.

// x-choices_demo.sce

// Demonstrates the x_choices() command /

clear,clc;

list1 = list(‘Food grading',3,['Excellent','Good','Passable','Poor']);
list2 = list(‘Service grading',2,['Excellent','Good','Passable','Poor']);
list3 = list(‘Interior grading',4,['Excellent','Good','Passable','Poor']);
answer = x_choices('Grade restaurant food..

service & interior',list(list1,list2,list3))

GUI demo 2: creating GUI demo 2: creating

poppop--up windows (3/5)up windows (3/5)

Case 5: x_choices()
with four alternatives
for three cases

Pick your
choices, click
OK, and
Scilab returns
the answer as
a vector*

*) Scilab 5.1.1 returns the answer automatically,
with 5.3.1 & 5.3.2 it must be asked for (a bug?)

GUI demo 2: creating GUI demo 2: creating

poppop--up windows (4/5)up windows (4/5)

ans =

 - 1.450D-12
 ans =

 0.

// x-matrix_demo.sce

// Demonstrates the use of x_matrix() /

clear,clc;

A = x_matrix('Change matrix to nxn as needed',eye(3,3));
det(A) // Calculate determinant
clean(det(A)) // Clean det(A) for small values

Case 6: Compute determinant for a
matrix A that is given by x_matrix().
The assumption is a 3x3 identity matrix

Change (here to 4x4 Magic
Square) and click OK

The answer is the same as earlier in
Chapter 5. Problem: It works in Scilab
5.1.1 but not in 5.3.1 and 5.3.2

 -->bew = ['Beer','Wine','Brandy','Gin','Water'];

 -->m = messagebox('Pick beverage','SELECTION','info',bew,'modal');

 -->m
 m =

 3.

GUI demo 2: creating GUI demo 2: creating

poppop--up windows (5/5)up windows (5/5)

Here “Brandy” is selected
and the answer returned*

Case 7: Create an info list of
beverage choices using list()
and messagebox()

*) Same problemrepeats.
Scilab does not return the
answer automatically (in
Scilab 5.3.1 it did so with
a simpler case, but not in
5.3.2 any more)

-->r = messagebox('Pick','Title',' ',['1','2'],'modal')
 r =

 2.

-->get(0,"screensize_px")
ans =

1. 1. 1280. 800.

-->get(0,"screensize_pt")
ans =

0. 0. 960. 600.

-->get(0,"screensize_norm")
ans =

0. 0. 1. 1.

-->get(0,"screendepth")
ans =

24.

GUI: computer screen GUI: computer screen

size & color depthsize & color depth

� The computer screen size is needed if we
want to position a GUI at a specific position
in the field of view

� For that we need information of the
computer screen size. It can be extracted
with the argument screensize_xx. There
are more alternatives for the _xx suffix,
check Help/root_properties for details

� Another alternative is the number of display
color resolution bits. It can be found with
the argument screendepth

� These arguments are used with the function
get(), meaning “find out.” See Example 6-1
for a practical case

GUI demo 3: opening a GUI demo 3: opening a

predefined GW, scriptpredefined GW, script
�� This demo shows how to open a new Graphics Window with This demo shows how to open a new Graphics Window with

predefined size and positionpredefined size and position
�� The size is defined relative to the computerThe size is defined relative to the computer’’s screen size in pointss screen size in points
�� The position in the middle of the screen has to be found by triaThe position in the middle of the screen has to be found by trial and l and

errorerror

// screensize_demo.sce

// Opens a new Graphics Window with a predefined size & location /

clear,clc,clf;

screen_size = get(0,"screensize_pt"); // Find computer screen size
size_x = .3*screen_size(3); // .6*screensize_pt 3rd element
size_y = .5*screen_size(4); // .8*screensize_pt 4th element
h_graph = scf(0); // Open Graphics Window
h_graph.figure_size = [size_x size_y]; // Define GW size
h_graph.figure_position =... // Position GW in the...

[size_x/.6 size_y/1.15]; // middle of the screen

GUI demo 3: predefined GUI demo 3: predefined

GW, screenshotGW, screenshot

The small GW opens in
the middle of the
screen (the picture has
been compressed and
looks muddled)

Note however that the
GW size is not exactly
in proportion to the
defined ratio of the
screen size, and it also
changes if we select
screensize_px instead
of screensize_pt (the
location changes as
well)

GUI shortcomingsGUI shortcomings

�� GUIs are not perfected in Scilab. The (messy) text on GUIs in GUIs are not perfected in Scilab. The (messy) text on GUIs in
WIKI.Scilab.org/howtoWIKI.Scilab.org/howto/ tells of very old bugs that remain unsolved / tells of very old bugs that remain unsolved

�� Apart from what is mentioned in Demo 2, Cases 5Apart from what is mentioned in Demo 2, Cases 5--7, and in the end 7, and in the end
discussion of Ex 6discussion of Ex 6--1, I have experienced 1, I have experienced problemsproblems withwith
–– Demo 1, where the Demo 1, where the listboxlistbox may (or may not) flow over the window framemay (or may not) flow over the window frame
–– Ex 6Ex 6--1, where the labels of the slider and first 1, where the labels of the slider and first radiobuttonradiobutton sometimes sometimes

open with reduced font sizeopen with reduced font size

�� WIKI.Scilab.org/howtoWIKI.Scilab.org/howto/ also mentions the following limitations:/ also mentions the following limitations:
–– Scilab does not allow vertical slidersScilab does not allow vertical sliders
–– checkbox == radiobuttoncheckbox == radiobutton
–– slider has only smallstep, no side arrows (and as I found out wislider has only smallstep, no side arrows (and as I found out with Ex 6th Ex 6--1, 1,

Scilab gets a lockup when I drag the slider)Scilab gets a lockup when I drag the slider)
–– foreground color is always greyforeground color is always grey
–– pressed radio/check always pale red (have not tried it)pressed radio/check always pale red (have not tried it)
–– only only pushbuttonpushbutton, , radiobuttonradiobutton, , checkboxcheckbox, and , and sliderslider support callbacksupport callback

�� The usual recommendation is to use The usual recommendation is to use Tcl/TkTcl/Tk when advanced GUI when advanced GUI
solutions are neededsolutions are needed——another program for you to learnanother program for you to learn

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

16. File handling16. File handling

We need file handling e.g. to We need file handling e.g. to
process measurement dataprocess measurement data

Return to Contents

File handling: File handling:

introductionintroduction
�� In engineering, data on external files often originate in automaIn engineering, data on external files often originate in automated ted

measurements. The data has to be read by Scilab before it can bemeasurements. The data has to be read by Scilab before it can be
processed. Weprocessed. We’’ll focus our discussion on this aspect of file handling ll focus our discussion on this aspect of file handling

�� Scilab has a set of commands for file handling, beginning with tScilab has a set of commands for file handling, beginning with the he
commands commands mopenmopen()() that opens a file, and that opens a file, and mclosemclose()() that closes it. that closes it.
Between those two we use e.g.:*Between those two we use e.g.:*

Check end of a fileCheck end of a filemenfmenf()()

Check size of an objectCheck size of an objectsize() size()

Move the pointerMove the pointermseekmseek()()

Read a file (Read a file (fscanMatfscanMat()() for matrix files)for matrix files)mfscanfmfscanf(), (), fscanMatfscanMat()()

Write data to a file (Write data to a file (fprintMatfprintMat()() for matrix files)for matrix files)mfprintmfprint, , fprintMatfprintMat()()

*) The full set of i/o functions (~60 in all) can be found underHelp/Files:
Input/Output functions. Recall the related load() function in Chapter 10.

File handling: demo 1 File handling: demo 1

(1/5), introduction(1/5), introduction

Open write file: fd, path, name

Write data into file

Close write file, ‘w’

Open file for reading, ‘r’

Define contents to read (whole file)

Return pointer to beginning of file

Define data to read

Close file

In this demo Scilab creates the data In this demo Scilab creates the data
file that is then read; later wefile that is then read; later we’’ll se ll se
how to read from text files created how to read from text files created
by other programsby other programs

Script sequences are shown to the Script sequences are shown to the
right. The script demonstrates the right. The script demonstrates the
use of the functions use of the functions mopenmopen()(), ,
mclosemclose()(), , mfprintfmfprintf()(), , mseekmseek()(), and , and
mfscanfmfscanf()()

Pay attention to the following steps: Pay attention to the following steps:
openopen as as ‘‘ww’’ file, file, closeclose ‘‘ww’’ file, file, openopen
as as ‘‘rr’’ file, file, closeclose ‘‘rr’’ file. The stack file. The stack
pointer moves down as we write into pointer moves down as we write into
the file and must be returned to the the file and must be returned to the
top before we begin to readtop before we begin to read

File handling: demo 1 File handling: demo 1

(2/5), script(2/5), script

// file_exercise1.sce

// The script demonstrates the process of 1) creating a text file /
// on Scilab, 2) closing it, 3) opening it again to be written into, /
// 4) writing the actual data into the file, 5) reading certain /
// pieces of data from the file, and 6) closing the read file, /
// Notice that both close operations are necessary! /

clear,clc;

// Create and open a text file for the exercise:
//---
fd = mopen('H:\Dr.EW\Writings\Scilab examples\file_exercise1.txt','w');

// Create data and write into the exercise file:
//---
t = (1:1:18)'; // Integers from 1 to 18
mfprintf(fd,'%6.3f\n',t);

Create the text (.txt)
file with mopen(). fd
= file descriptor.
Note the argument
‘ w’ (“write”) that is
used to create a
new file

Then fill the file with
data (in this case
created by t) using
mfprintf(). Note the
odd argument
‘ %6.3f\n' that
defines the output
size (explained
below)

File handling: demo 1 File handling: demo 1

(3/5), script cont..(3/5), script cont..
After that the file
has to be closed

Then opened again
to be read (‘r’)

Next we read in its
entirety (the -1)

But the pointer must
be returned to the
top..

before we can
define which data
we want to see

Finish by closing the
file (see below for
note on mclose())

// Close exercise file:
//---------------------------
mclose(fd);

// Open the exercise file for reading:
//--
fd = mopen('H:\Dr.EW\Writings\Scilab examples\file_exercise1.txt','r');

// Read and format file contents:
//--
contents = mfscanf(-1,fd,'%f') // -1 means entire file contents

// Return position pointer to file beginning:
//--
mseek(0,fd) // Following mfscanf(-1, ,) the pointer is at the end

// Read some data from the file:
//--
five_data = mfscanf(fd,'%f %f %f %f %f') // First five data
three_data = mfscanf(fd, '%f %f %f') // Next three data
[n,data_9,data_10,data_11] = mfscanf(fd,'%f %f %f')// Three specific..

// elements
// Close the file:
//--------------------
mclose(fd)

File handling: demo 1 File handling: demo 1

(4/5), the .txt file(4/5), the .txt file

Scilab has put the text file where it was told
to, on the H: drive. Check with Notepad

 -->five_data
 five_data =

 1. 2. 3. 4. 5.

 -->three_data
 three_data =

 6. 7. 8.

 -->data_11
 data_11 =

 11.

 -->n
 n =

 3.

 -->data_9:11
 ans =

 9. 10. 11.

 -->contents
 contents =

 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
 10.
 11.
 12.
 13.
 14.
 15.
 16.
 17.
 18.

File handling: demo 1 File handling: demo 1

(5/5), check(5/5), check

The defined read
variable contents
brings up the
contents of the
text file on the
Console

We can then pick
out specific
elements from
the list

The variables
five_data ,
three_data , and
data_11 were
defined in the
script

n is the # of
elements (-1) in
the vector it
belongs to (4-1)

We can also
address specific
elements in the
column vector
and get the
answer as a row
vector

Spreadsheet data (1/7): Spreadsheet data (1/7):

Creating dataCreating data
�� Scilab does not interface directly Scilab does not interface directly

with spreadsheet programs. The with spreadsheet programs. The
data has to be saved as a text data has to be saved as a text
filefile

�� I started with the new kid on I started with the new kid on
the block, the block, LibreOfficeLibreOffice CalcCalc. . The
data is the output from an
indoor/outdoor temperature
measurement

�� The process of saving The process of saving LibOLibO and and
OOoOOo data as a .data as a .csvcsv text file is text file is
explained laterexplained later

�� If you do it in Excel you just If you do it in Excel you just
save it as save it as Text (Tab Text (Tab
delimited)delimited). Do not select . Do not select
Unicode Text because Scilab
cannot read it

Spreadsheet data (2/7):Spreadsheet data (2/7):

Data saved as .Data saved as .csvcsv filefile
�� And here is the And here is the LibOLibO data saved as data saved as

file_spreadsheet_demo5.csvfile_spreadsheet_demo5.csv and and
seen in WordPad (the figure 5 reflects seen in WordPad (the figure 5 reflects
the fact that it is my fifth attempt to the fact that it is my fifth attempt to
get it right)get it right)

�� LetLet’’s see if Scilab can read the .s see if Scilab can read the .csvcsv
file. There are two command options:file. There are two command options:
–– M = M = fscanfMatfscanfMat()() for a matrix of real for a matrix of real

numbers (text data is ignored)numbers (text data is ignored)
–– [[M,textM,text] =] = fscanfMatfscanfMat()() for a string for a string

matrixmatrix

�� The output for both alternatives are The output for both alternatives are
shown on the next slideshown on the next slide

�� After that we can write a script to plot After that we can write a script to plot
the datathe data

-->M = fscanfMat('I:\file_spreadsheet_demo5.csv')
M =

1. - 7.3 20.1
2. - 7.8 19.8
3. - 8.3 19.5
4. - 7.6 19.5
5. - 5. 19.7
6. - 3.3 20.
7. - 1.9 20.2
8. 0.1 20.6
9. 1.2 21.1
10. 0.4 21.3
11. - 2.1 21.
12. - 3.6 20.7

-->[G,text] = fscanfMat('I:\file_spreadsheet_demo5.csv')
text =

“Reading” “Outdoor” “Indoor”
G =

1. - 7.3 20.1
2. - 7.8 19.8
3. - 8.3 19.5
4. - 7.6 19.5
5. - 5. 19.7
6. - 3.3 20.
7. - 1.9 20.2
8. 0.1 20.6
9. 1.2 21.1
10. 0.4 21.3
11. - 2.1 21.
12. - 3.6 20.7

Spreadsheet data (3/7):Spreadsheet data (3/7):

..csvcsv file read by Scilabfile read by Scilab

M = fscanfMat()

[G,text] = fscanfMat()

Note: If you work
with MS Excel you use
of course the ending
.txt instead of .csv
(CSV stands for
Comma Separated
Variable)

Spreadsheet data (4/7):Spreadsheet data (4/7):

script for plotting (1/2)script for plotting (1/2)

// spreadsheet_data_plot.sce

// The script reads data from the test file /
// file_spreadsheet_demo5.csv, determines its /
// length,and plots its two measurement sets /

clear,clc,clf;

// Open the file, determine number of rows,
// and form vectors of its columns:
//---
data_file = fscanfMat(IH:\file_spreadsheet_demo5.csv');

// Opens text file
rows = size(data_file,'r'); // Determine number of rows
readings = data_file(:,1); // Column 1, reading # (redundant)
outdoor = data_file(:,2); // Column 2, outdoor temperature
indoor = data_file(:,3); // Column 3, indoor temperature

The fscanfMat()
command cannot be
split on two rows
(even if it is not
needed in this case)

The size(name,’r’)
function is used to
determine the number
of matrix rows

Matrix columns form
separate vectors

Spreadsheet data (5/7):Spreadsheet data (5/7):

script for plotting (2/2)script for plotting (2/2)

// Assume outdoor temp always lower
// than indoor and form plot commands:
//---
ymin = min(outdoor); // Determine min temp
ymax = max(indoor); // Determine max temp
dy = (ymax-ymin)/10; // Define frame margin
rect = [0,ymin-dy,rows+1,ymax+dy]; // Define plot frame
x = linspace(1,rows,rows);
plot2d(x,indoor,5,'011',' ',rect) // Plot inodr temp
plot2d(x,outdoor,2,'000') // Plot outdor temp
xgrid(1) // Add grid
xtitle('TEMPERATURE MEASUREMENTS','Reading #',…

'Temperature, deg C')
legend('Indoor temp','Outdoor temp',4)

The plot command uses the
obsolete plot2d() syntax
that we have seen before.
The reason for having it
here is that plot2d() with
the frameflag argument of
the new syntax does not
work when two graphs
should be fused into one
plot: The second plot
destroys the first one, and
when the rect argument is
included Scilab responds
with an error message
(know it, tried it)

Spreadsheet data (6/7):Spreadsheet data (6/7):

plotplot

Simple plot, but the
main point with this
exercise is to show
how to go from
spreadsheet data to
a text file and then to
plot the data

And then we turn to
the question of how
to create text files
with LibreOffice Calc
and OpenOffice.org
Calc (next slide)

Spreadsheet data (7/7): Spreadsheet data (7/7):

Text data in Text data in LibOLibO & & OOoOOo

The saved .csv file looks messy
if you open it with Excel, but it
is ok in Notepad and WordPad

Save as Text CSV (.csv)
and select Tab in the Field
delimiter dropdown menu
of the window that opens.
That’s it

mopenmopen()()

�� The The mopenmopen()() function is of course more intricate than what one can function is of course more intricate than what one can
understand from the discussion above. Forgetting binary and textunderstand from the discussion above. Forgetting binary and text
files, the general structure of files, the general structure of mopenmopen()() is:is:

[[fdfd <,err>] = <,err>] = mopen(file_namemopen(file_name <,mode>)<,mode>)

wherewhere
–– file_namefile_name is the entire path of the file, including its nameis the entire path of the file, including its name
–– modemode defines what to do with the data, e.g.:defines what to do with the data, e.g.:

�� rr, read an existing file, read an existing file
�� ww, create a new file & write into it, alt. overwrite data in exis, create a new file & write into it, alt. overwrite data in existing fileting file
�� aa, append, open a file and add data to the end, append, open a file and add data to the end

–– fdfd, file descriptor, temporary name of the file, file descriptor, temporary name of the file
–– errerr, error parameter. , error parameter. err = 0err = 0 if the file is successfully opened, if the file is successfully opened, err <> 0err <> 0

if file opening failed (if file opening failed (merrormerror()() is a function related to the is a function related to the errerr argument)argument)

�� It can be a good idea to It can be a good idea to check the check the errerr parameterparameter after a file has after a file has
been opened (has not been done in Demo 1)been opened (has not been done in Demo 1)

mclosemclose()()

�� A file that has been opened with A file that has been opened with mopenmopen()() should be closed with the should be closed with the
mclose(fdmclose(fd)) command even if it is automatically closed when Scilab command even if it is automatically closed when Scilab
closes. However, pay attention to the following ambiguous statemcloses. However, pay attention to the following ambiguous statement ent
in Scilabin Scilab’’s s Help BrowserHelp Browser::

“mclose must be used to close a file opened by mopen. If fd is
omitted mclose closes the last opened file.

Be careful with the use of [mclose(‘all’)] ... because when it is used
inside a Scilab script file, it also closes the script and Scilab will not
execute commands written after mclose(’all’).”

mfprintfmfprintf(), (), fprintfMatfprintfMat()()

�� The The mfprintfmfprintf()() command is used to convert, format ,and write data command is used to convert, format ,and write data
in an opened text filein an opened text file

�� The general structure of The general structure of mfprintfmfprintf()() is:is:

mfprintf(fdmfprintf(fd, , ’’<text a> format_1 <text b> format_2 <text a> format_1 <text b> format_2
<text c> format_3...<text c> format_3...’’, value_1, value_2, value_3...), value_1, value_2, value_3...)

�� Which means that each value that we want to print is declared wiWhich means that each value that we want to print is declared with th
an optional an optional texttext, the , the formatformat to be printed in (both within a single pair to be printed in (both within a single pair
of quotation marks), and the of quotation marks), and the valuevalue to be printedto be printed

�� Format declarations are given on the next slideFormat declarations are given on the next slide
�� The format demo two slides down should give a better grasp of whThe format demo two slides down should give a better grasp of what at

it all means. If you ask me, it looks really messy...it all means. If you ask me, it looks really messy...
�� The The fprintfMatfprintfMat()() command is used to write a matrix in a file. See command is used to write a matrix in a file. See

HelpHelp for detailsfor details

Format definitionsFormat definitions

�� Recall the arguments Recall the arguments ‘‘%6.3f%6.3f\\nn’’ and %f in and %f in File handling Demo File handling Demo
1. 1. They are part of a set of format definitions:They are part of a set of format definitions:
–– %d%d for integers (e.g. 1230)for integers (e.g. 1230)
–– %f%f for floating point presentation (e.g. 12.30987)for floating point presentation (e.g. 12.30987)
–– %e%e for exponentials (e.g. 1.2345e+002)for exponentials (e.g. 1.2345e+002)
–– %s%s for text (string) presentation (e.g. Hello World!)for text (string) presentation (e.g. Hello World!)
–– %6.3f%6.3f to define the output sizeto define the output size

�� the 6 is for the total number of figuresthe 6 is for the total number of figures
�� the 3 is for the number of figures after the decimal pointthe 3 is for the number of figures after the decimal point

–– \\nn ““go to a new linego to a new line””
–– \\tt ““use a horizontal tabulatoruse a horizontal tabulator””

�� Some definition combinations, like %6.3fSome definition combinations, like %6.3f\\n, are possiblen, are possible

Format demo:Format demo:

script (1/2)script (1/2)

// file_format_demo.sce

// Demonstrates the use of mfprintf() format definitions. /
// Pay attention that with several variable to be printed, /
// all formats are declared (inside a single pair of citation /
// marks) before the variables are defined. /

clear,clc;

// Create a new test file for writing:
//--
fd = mopen('H:\Dr.EW\Writings\Scilab examples\file_format_demo.txt','w');

// Some variable to play with:
//---------------------------------
A = 123.45678901;
a = 0.3;
b = 1.23e-02;
c = a + %i*b;
text = 'Hello World';

Just initial declarations here.
The real stuff is on the next slide

This demo aims at clarifying the use of format declarations:This demo aims at clarifying the use of format declarations:

Format demo:Format demo:

script (2/2) & text filescript (2/2) & text file

// Several outputs to be demonstrated:
//--
mfprintf(fd,'%d\n %10d\n %20d\n %8.4f\t %8.4f\n %5.2f\t %5.2f\t %5.2f\n',...

A,A,A,A,A,A,A,A);
mfprintf(fd,'%d\n %f\t %e\n %10.3f\t %6.2f\n complex = %3.4f + i%3.4f\n\n',...

A,A,A,A,A, real(c), imag(c));
mfprintf(fd,'%e\t %5.2e\n %s\n %5s\t %10s\t %15s\t %20s\t\n',...

A,A, text, text, text, text, text);

// Close the opened file:
//--------------------------
mclose(fd);

You have to be very
careful to get it right...

Remember
to close!

No optional
text is used
in any of
the cases

mfscanfmfscanf(), (), fscanfMatfscanfMat()()

�� We used We used mfscanfmfscanf()() in Demo 1 to read (scan) data from a file. Two in Demo 1 to read (scan) data from a file. Two
examples of its use:examples of its use:
–– contents = mfscanf(contents = mfscanf(--1, 1, fdfd, , ‘‘%f%f’’)). With this argument it reads the whole . With this argument it reads the whole

contents of the file and formats itcontents of the file and formats it
–– four_valuesfour_values = = mscanf(fdmscanf(fd, , ‘‘%f %f %f %f %f%f %f%f’’)). Reads the four first data in . Reads the four first data in

the filethe file
–– After reading data, the stack pointer remains where it is and weAfter reading data, the stack pointer remains where it is and we must use must use

the the mseek(n,fmseek(n,f)) command to shift it to a new location. The first row in command to shift it to a new location. The first row in
the stack is numbered 0, as indicated by the stack is numbered 0, as indicated by mseek(0,fd)mseek(0,fd) in Demo 1in Demo 1

�� In the discussion of spreadsheet data we used the In the discussion of spreadsheet data we used the fscanfMatfscanfMat()()
function to read the data contained in a .function to read the data contained in a .csvcsv file. The function has file. The function has
two alternative call sequences:two alternative call sequences:
–– fscanMat(filepathfscanMat(filepath,<,<opt_argopt_arg>)>) to read the numeric part only of scalar to read the numeric part only of scalar

matrix data in a text filematrix data in a text file
–– [[M,textM,text] =] = fscanfMat(filepathfscanfMat(filepath,<,<opt_argopt_arg>)>) to read the data and include to read the data and include

the first nonthe first non--numeric linesnumeric lines
–– The default optional argument is The default optional argument is %1g%1g. Check with Help for other options . Check with Help for other options

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

17. Animation17. Animation

A brief introduction to creating A brief introduction to creating
dynamic graphics dynamic graphics

Return to Contents

IntroductionIntroduction

� Animations are a sequence of plots on the Graphics Window;
executed by showing a plot, freezing it while an incremental shift is
being calculated, and then swapping the old plot for the new one.*
With correct speed and increments it gives the illusion of continuous
movement

� There are two main modes for creating animations:
– Real time mode. The animation runs while the script is being executed,

with the speed being determined by the incremental shifts and computer
speed. The execution can be influenced (slowed down) by the
realtimeinit() and realtime() functions

– Playback mode. Possible in Matlab with the getframe and movie
commands, but Scilab lacks this alternative

� A tool for producing animations is the pixmap handle command and
the show_pixmap() function. Example 6-2, however, does not use
the pixmap command

*) Unless one wants to retain the whole sequence, as in Example 6-2.

Demo 1 (1/4): Introducing Demo 1 (1/4): Introducing

pixmappixmap & & xfarcsxfarcs()()

� This demo is adapted from Antonelli & Chiaverini. It exhibits in
particular the pixmap and show_pixmap() pair of commands

� pixmap=“on”/“off”
– The pixmap mode* is used to achieve a smooth animation. With the

handle command pixmap=“on” the display is refreshed only when called
on by the command show_pixmap()

– Compare this case with the drawlater() - drawnow() pair in ordinary
plotting

� The script uses the xfarcs() function to fill the moving pie. Related
Scilab functions are xfarc(), xarcs(), and xarc()

� xfarcs() is used instead of xfarc() because the latter has no
provision for defining plot color by arguments, and its Axes handle
gca() does not recognize any children that would allow colors to be
defined

*) Also called “double buffer mode” because the picture is first created in one
buffer before being pushed to the second (the Graphics Window).

// animation_ball.sce

// Creates a cut pie that makes 5 loops while /
// moving around a circle. Demonstrates the use of /
// the pixmap - show_pixmap() pair of commands, /
// and the use of xfarcs() in drawing /

clear,clc;

steps = 250; // # of animation steps
r1 = 0.5; // Pie size
r2 = 0.5; // Loop size
f = gcf(); // Figure handle
f.pixmap = "on"; // Create before display
for i=1:steps

clf(); // Erase pie after each step
plot2d (%nan,%nan,frameflag=3,.. // Define figure

rect=[-2,-2,2,2],axesflag=1)
xtitle('MOVING PIE');
theta1 = i*2*%pi/steps;
theta2 = i*10*%pi/steps;
c = [cos(theta1)+r2*cos(theta2),.. // Define pie..

sin(theta1)+r2*sin(theta2)]; // position
xfarcs([c(1)-r1, c(2)+r1, 2*r1,... // Plot pie,..

2*r1, 0, 360*48]', 2); // color=2
f.background = color('grey');
show_pixmap(); // Display created graphics

end
f.pixmap = 'off'; // Exit pixmap mode

Demo 1 (2/4): moving Demo 1 (2/4): moving

pie, scriptpie, script
�� Missing x and y values are Missing x and y values are

substituted by (%substituted by (%nannan))

�� Only Only frameflagframeflag=3 works in =3 works in
this casethis case

�� Note the imaginary values Note the imaginary values
of theta1 & theta2. Their of theta1 & theta2. Their
relative values (2relative values (2ππ & 10& 10ππ))
determine the five loops determine the five loops
that the pie makes before that the pie makes before
finishing the full circlefinishing the full circle

�� xfarcsxfarcs()() requires six requires six
vector values as its vector values as its
argument. The color code argument. The color code
is optional (the default is optional (the default
color is black)color is black)

Demo 1 (3/4): moving Demo 1 (3/4): moving

pie, frozen plotpie, frozen plot

Here is the blue pie in its
combined start and finish
position

The completion of the full
circle in 250 steps takes about
10 seconds with my 1.6 GHz
dual-core processor

Demo 1 (4/4): discussionDemo 1 (4/4): discussion

�� Odd things happened while I tried to get this one goingOdd things happened while I tried to get this one going
�� The Graphics Window mostly opened as shown above, but I have The Graphics Window mostly opened as shown above, but I have

also seen a black ball (that was before I changed it to a pie) oalso seen a black ball (that was before I changed it to a pie) on a n a
red background surrounded by a yellow frame topped by a red red background surrounded by a yellow frame topped by a red
titletitle——with the animation running just as smoothly as it shouldwith the animation running just as smoothly as it should

�� When I changed When I changed frameflagframeflag=3=3 to to frameflagframeflag=2=2 the dot rotated the dot rotated
around to the lower leftaround to the lower left--hand corner, and when I changed back hand corner, and when I changed back
again Scilab told that the handle is not valid any more. Just goagain Scilab told that the handle is not valid any more. Just go on on
and reload...and reload...

�� I also saw the size of the Graphics Window change from executionI also saw the size of the Graphics Window change from execution
to execution for no obvious reasonto execution for no obvious reason

�� In short, these events give the feeling that animationIn short, these events give the feeling that animation——together together
with GUIswith GUIs——is is not a top priority of the Scilab teamnot a top priority of the Scilab team

// animation_rectangles.sce

// Two rectangles slide diagonally over the Graphics /
// Window. As they slide over each other their colors /
// are NORed. The solution is only partly successful /

clear,clc,clf();

f=gcf();
f.pixmap='on'; // Double buffer mode
f.pixel_drawing_mode='nor'; // NOR mode
f.background=color("lightblue");

ax=gca();
ax.data_bounds=[0,-4;14,10]; // Plot limits
ax.margins=[.1 .1 .1 .1]; // Plot framed
ax.background=color("lightgrey");
max_pos = 10; // Max position of rectangles

k=%nan; // Auxiliary parameter
xfrect(k,k,4,4); // First black rectangle
e1 = gce();
xfrect(max_pos-k,max_pos-k,4,4); // Second rectangle
e2=gce();

for k=linspace(1,10,200) // Animation loop
e1.data(1:2)=k;
e2.data(1:2)=max_pos-k;
show_pixmap() //Show double buffer

end

Demo 2 (1/2): moving Demo 2 (1/2): moving

rectanglesrectangles

�� This demo is adapted from This demo is adapted from
ChancelierChancelier et al.et al.

�� ItIt’’s s an attemptan attempt to to
demonstrate the use of the demonstrate the use of the
XOR command in XOR command in
f.pixel_drawing_modef.pixel_drawing_mode= =
‘‘xorxor’’, here NOR instead of , here NOR instead of
XOR for reasons told belowXOR for reasons told below

�� The rectangles move on top The rectangles move on top
of a grey backgroundof a grey background

�� The rectangles are drawn The rectangles are drawn
with with xfrectxfrect()() without color without color
code, they are therefore code, they are therefore
blackblack

�� The rectangles move The rectangles move
diagonally from corner to diagonally from corner to
corner in 200 stepscorner in 200 steps

Demo 2 (2/2): frozen plotDemo 2 (2/2): frozen plot

Here is the animation in progress.
The NOR function does its job, but
otherwise something is quite
wrong: We do not have black
rectangles moving across a light
grey background

The problem is that the command
f.pixel_drawing_mode=‘nor’
operates on the whole screen, not
just on the moving rectangles as
intended by Chancelier et al. For
that reason the XOR operation
they use is even worse than NOR

I decided to leave the demo in this
state. Those who are interested
can find a better solution in Steer’s
Scilab Graphics, p. 28

Demo 3 (1/3): a 3D Demo 3 (1/3): a 3D

object, script (1/2)object, script (1/2)

�� Now weNow we’’ll look at a ll look at a
geometrically more geometrically more
challenging object, a 3D challenging object, a 3D
plot that moves both in plot that moves both in
azimuth and elevationazimuth and elevation

�� Data bounds are not Data bounds are not
defined separately, they are defined separately, they are
changing with surface mesh changing with surface mesh
resolutionresolution

�� The first plot command The first plot command
only defines axes labelsonly defines axes labels

// rotating_surface.sce

// The 3D surface is first rotated and then /
// tilted, after which its position is locked /

clear,clc,clf;

// Initialize:
//--------------
f=gcf();
f.pixmap="on";
clear_pixmap();
t=%pi/20*(-20:20); // Bounds & mesh resolution

// First plot command, defines labels:
//---
plot3d1(t,t,sin(t)'*cos(t),%nan,%nan,..

'x_axis@y_axis@z_axis');

Demo 3 (2/3): a 3D Demo 3 (2/3): a 3D

object, script (2/2)object, script (2/2)

// Set speed and turn object:
//--------------------------------------
step = 2; // Step size --> 1/speed
for angle1 = 25:step:100, // Rotate loop

plot3d1(t,t,sin(t)'*cos(t),angle1,45)
show_pixmap();

end
for angle2 = 45:step:80, // Tilt loop

plot3d1(t,t,sin(t)'*cos(t),100,angle2)
show_pixmap();

end
f.pixmap="off";

�� The surface rotates around The surface rotates around
the z axis, starting at 45the z axis, starting at 45ºº
and finishing at 100and finishing at 100ºº, while , while
the tilt angle is constant at the tilt angle is constant at
4545ºº

�� When finished rotating, the When finished rotating, the
surface tilts around the x surface tilts around the x
axis from 45axis from 45ºº up to 80up to 80ºº, ,
with the rotation angle with the rotation angle
constant at 100constant at 100ºº

�� With my 1.6 GHz laptop the With my 1.6 GHz laptop the
animation does not run animation does not run
perfectly smoothly, the perfectly smoothly, the
jumps from step to step are jumps from step to step are
noticeablenoticeable

Exception in thread "AWT-EventQueue-0" java.lang.NullPointerException
 at javax.swing.plaf.basic.BasicTextUI$RootView.paint(Unknown Source)

…..

Demo 3 (3/3): a 3D Demo 3 (3/3): a 3D

object, plotobject, plot

The surface has reached
its destination: rotated to
100º (azimuth) and tilted
to 80º (elevation)

While testing various
parameters I saw this
message on the Console
(long list). It disappeared
when I re-run the script

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

18. Miscellaneous18. Miscellaneous

A hotchpotch of philosophy and A hotchpotch of philosophy and
realism that hopefully is of userealism that hopefully is of use

Return to Contents

The problemThe problem--solving solving

processprocess

1.1. Define the problem (answer the question Define the problem (answer the question ““WhatWhat’’s the problem?s the problem?””))
2.2. Outline a way of solving the problem (block diagram, DFD, etc.)Outline a way of solving the problem (block diagram, DFD, etc.)
3.3. Define equations and/or algorithms (solve the math problem)Define equations and/or algorithms (solve the math problem)
4.4. Transform steps 2 & 3 to a software outline or architectureTransform steps 2 & 3 to a software outline or architecture
5.5. Do the coding in steps and test each step before proceedingDo the coding in steps and test each step before proceeding
6.6. Validate the solution (does it do what it should do, with all inValidate the solution (does it do what it should do, with all input put

values (especially 0 & values (especially 0 & ∞∞), and nothing more than it should do?)), and nothing more than it should do?)

The problem-solving process for a computational problem typically
goes through the following steps (not a textbook definition):

The boundaries between these steps can be blurred, iterations are
mostly needed, and one or two of the steps may be more important
than the others. Each step also requires a number of subtasks to be
performed. But in general it helps to have this approach in mind when
attacking a problem.

Good program structuresGood program structures

�� Keep in mind that a program is characterized by a) its structureKeep in mind that a program is characterized by a) its structure and and
b) by what it doesb) by what it does

�� Give variables clear and meaningful names; use single letters onGive variables clear and meaningful names; use single letters only ly
for x, y and z axes, loop counters (for x, y and z axes, loop counters (j,kj,k), and the like), and the like

�� Split the code into logical entities with the help of subroutineSplit the code into logical entities with the help of subroutiness
�� Separate structural entities by empty rows and headline commentsSeparate structural entities by empty rows and headline comments
�� Indent rows (loops, print commands, etc) for increased clarityIndent rows (loops, print commands, etc) for increased clarity
�� Be liberal with the use of comments, keep space between the Be liberal with the use of comments, keep space between the

command and its row commentcommand and its row comment
�� Simple is beautifulSimple is beautiful; a good program is short and unambiguous; a good program is short and unambiguous
�� For a more thorough discussion, see textbooks on software For a more thorough discussion, see textbooks on software

engineeringengineering

"Always program as if the person who will be maintaining your program is a violent
psychopath that knows where you live.”

Martin Golding

Programming pitfalls Programming pitfalls

(1/4)(1/4)
�� Computer programs cannot be tested to guarantee 100% reliabilityComputer programs cannot be tested to guarantee 100% reliability. .

There is the danger of both hidden andThere is the danger of both hidden and——in retrospectin retrospect——obvious obvious
bugs.* Avoiding common programming pitfalls should be a bugs.* Avoiding common programming pitfalls should be a
minimum goal and requires that we are familiar with themminimum goal and requires that we are familiar with them

�� Basic Scilab tutorials do not pay much attention to programming Basic Scilab tutorials do not pay much attention to programming
pitfalls. pitfalls. ““EineEine EinfEinfüührunghrung in Scilabin Scilab”” by Bruno by Bruno PinPinççonon (original in (original in
French, for me German is far easier) is an exception. Its last cFrench, for me German is far easier) is an exception. Its last chapter hapter
briefly discusses programming pitfalls. briefly discusses programming pitfalls. Worth taking a look atWorth taking a look at

�� A search on the web for A search on the web for ““MatlabMatlab pitfallspitfalls”” provides some hints. There provides some hints. There
is also a useful discussion in Chapter 9 of Hahn, Valentine: is also a useful discussion in Chapter 9 of Hahn, Valentine: Essential Essential
MatlabMatlab for Engineers and Scientistsfor Engineers and Scientists, 3rd ed., Butterworth, 3rd ed., Butterworth--HeineHeine--
mannmann, 2007, 2007

*) The term “bug,” according to anecdote, was coined in 1947 when Grace
Hopper (“Grandma Cobol”) of the US Navy identified a computer problem
being caused by a moth in a relay (/tube/connector, the story varies). The
original “bug” was thus a hardware related problem and lethal to the bug.

Programming pitfalls Programming pitfalls

(2/4): error types(2/4): error types
�� Programming errors can broadly be grouped into the following typProgramming errors can broadly be grouped into the following typeses

–– Logical errors, meaning errors in the algorithm used to solve a Logical errors, meaning errors in the algorithm used to solve a problem problem
–– Syntax errors, meaning mistakes in the construction of Scilab stSyntax errors, meaning mistakes in the construction of Scilab statementsatements
–– Rounding errors, meaning errors due to limited computer accuracyRounding errors, meaning errors due to limited computer accuracy

�� Logical errorsLogical errors are mostly the result of our limited understanding of are mostly the result of our limited understanding of
the problem at hand and/or our limited knowledge of algorithms ithe problem at hand and/or our limited knowledge of algorithms in n
general and Scilab in particulargeneral and Scilab in particular

�� Syntax errorsSyntax errors are generally speaking due to human limitations: are generally speaking due to human limitations:
oversight, carelessness, forgetfulness, and the like. Typical caoversight, carelessness, forgetfulness, and the like. Typical cases are ses are
misspelling, mismatched quote marks, wrong type of arguments, etmisspelling, mismatched quote marks, wrong type of arguments, etc.c.

�� Rounding errorsRounding errors arise from truncations due to hardware limitations, arise from truncations due to hardware limitations,
digitization of mathematical functions, converting between decimdigitization of mathematical functions, converting between decimal al
and binary mathematics, etc.and binary mathematics, etc.

�� There is also a There is also a fourth typefourth type, namely errors made by Scilab system , namely errors made by Scilab system
designers and programmers. They show up as bugs, performance designers and programmers. They show up as bugs, performance
limitations, poor user interfaces, and the like limitations, poor user interfaces, and the like

Programming pitfalls Programming pitfalls

(3/4): error messages(3/4): error messages

 -->[1 2 3] + [4 5]
 !--error 8
 Inconsistent addition.

“Incompatible vector lengths”
would be a better error message

 -->[1 2 3] * [4 5 6]
 !--error 10
 Inconsistent multiplication.

This message is misleading if what you
intend is []’ * [], but ok if you aim at
elementwise multiplication [] .* [] (but
“Wrong multiplication” is better still)

 -->sqrt = 5^2 + 3*17
 Warning : redefining function: sqrt . Use funcprot(0) to avoid this message

 sqrt =

 76.

Here you can see that the warning “redefining function”
does have a meaning. I have improperly used sqrt as a
variable name, but Scilab recognizes it is a built-in
function. The answer is correct, but one should rather
change the variable name. Check help name if you are
uncertain if an intended variable name is reserved

Programming pitfalls Programming pitfalls

(4/4): the endless loop(4/4): the endless loop

I have several times mentioned
the risk of creating an endless
loop, so let’s look at this little
beast

When you execute the script you
have to crash the program to stop
it. The easiest way is to press the
Close button on the Console and
then reload Scilab

Why does the loop not end?
Because we die from old age
before the variable n by chance
gets exactly the value 0.5

// endless_loop.sce

// Demonstrates an endless loop. /
// Execution ends only by crashing /
// the program (click on the Close /
// button (X) on the Console) /

n = .1;
dt = getdate();
rand('seed',1000*dt(9) + dt(10));
while n ~=0.5;

n = rand(0,'normal');
end;
disp(n)

Have you forgotten
about seeding rand
functions? If so, go back
to Ex 1-3 (lotto draw)

Debugging (1/2)Debugging (1/2)

�� We are already familiar with ScilabWe are already familiar with Scilab’’s rudimentary embedded s rudimentary embedded
debugger that provides error messages on the Console (a separatedebugger that provides error messages on the Console (a separate
debugger window may come with Scilab 6.0)debugger window may come with Scilab 6.0)

�� Another debugging tool is the Another debugging tool is the pausepause, , resumeresume, , abortabort set of set of
statements. Read section 6.7 in statements. Read section 6.7 in Introduction to ScilabIntroduction to Scilab by by MichaMichaëëll
BaudinBaudin for an explanationfor an explanation

�� My suggestion for painless programming is My suggestion for painless programming is stepwise developmentstepwise development, ,
meaning to meaning to
–– Develop the script inside out, starting with the central equatioDevelop the script inside out, starting with the central equation (or n (or

similar similar ““kernelkernel””) and executing it using a simple plot or display command.) and executing it using a simple plot or display command.
Correct the Correct the ““kernelkernel”” until it works to satisfactionuntil it works to satisfaction

–– Extend the script stepwise by adding subroutines, loops, plot coExtend the script stepwise by adding subroutines, loops, plot commands, mmands,
handle commands, etc. and test (execute) after each added stephandle commands, etc. and test (execute) after each added step

–– The advantage with stepwise development is that, first, bugs areThe advantage with stepwise development is that, first, bugs are isolated isolated
to a specific part of the script and easy to identify and ,seconto a specific part of the script and easy to identify and ,second, one gets d, one gets
a feeling of satisfaction from each added buga feeling of satisfaction from each added bug--free step free step

Debugging (2/2): Debugging (2/2):

validationvalidation

�� Finally, even when a script seems to behave correctly we must Finally, even when a script seems to behave correctly we must
validate it. validate it. DonDon’’t judge a bird by the colors of his featherst judge a bird by the colors of his feathers

�� To validate you can (among other things):To validate you can (among other things):
–– Take a critical look at the solution: is it logically Take a critical look at the solution: is it logically soundsound, do you really , do you really

know what the program know what the program doesdoes——and what it and what it does not does not do?do?
–– Check for and eliminate redundancies (I have found surprisingly Check for and eliminate redundancies (I have found surprisingly many in many in

the textbook examples that I have borrowed)the textbook examples that I have borrowed)
–– Run it for some special cases for which you know the answer. If Run it for some special cases for which you know the answer. If no no

model cases are available, check at least that the answers it prmodel cases are available, check at least that the answers it provides are ovides are
plausible and magnitudes are correctplausible and magnitudes are correct

–– Test for Test for ““unusual eventsunusual events”” (e.g. where you could end up dividing by zero), (e.g. where you could end up dividing by zero),
extreme values (e.g. infinite), conditions leading to loop lockuextreme values (e.g. infinite), conditions leading to loop lockup, p,
overlooked rounding errors, stack overruns, etc.overlooked rounding errors, stack overruns, etc.

–– Work through the program by hand to see if you can spot where thWork through the program by hand to see if you can spot where things ings
could start going wrongcould start going wrong

–– Ask somebody cleverer than yourself for a second opinionAsk somebody cleverer than yourself for a second opinion

Speeding up Scilab (1/4): Speeding up Scilab (1/4):

introductionintroduction

�� There are ways to speed up the execution of Scilab programs. There are ways to speed up the execution of Scilab programs.
The three major rules are:The three major rules are:
–– Replace loops by Replace loops by vectorizedvectorized operationsoperations.* Particularly with the .* Particularly with the forfor loop loop

one should aim at its one should aim at its vectorizedvectorized alternativealternative
–– Use subroutines whenever possibleUse subroutines whenever possible
–– Avoid time consuming algorithmsAvoid time consuming algorithms like like RungeRunge--KuttaKutta

�� SpeedSpeed--upup——particularly if we move from loops to particularly if we move from loops to vectorizedvectorized
functionsfunctions——requires that we adopt new thinking. Itrequires that we adopt new thinking. It’’s a new s a new
learning effort. But vectors are, after all, what Scilab is all learning effort. But vectors are, after all, what Scilab is all about! about!

�� However, there is a problem with learning However, there is a problem with learning vectorizedvectorized operations: operations:
Textbooks tell us to use them but pay little attention to the Textbooks tell us to use them but pay little attention to the
subject and their few examples are very basicsubject and their few examples are very basic

*) Scilab does not support Matlab’svectorize() function.

Speeding up Scilab (2/4): Speeding up Scilab (2/4):

vectorvector--based functionsbased functions
�� This case is adapted from This case is adapted from

BaudinBaudin. The task is to compute . The task is to compute
the sum of odd integers [1,99]the sum of odd integers [1,99]

�� In the first case we use a nested In the first case we use a nested
while...if...end...while...if...end...endend structure, structure,
picking odd integers with the picking odd integers with the
modulo()modulo() functionfunction

�� Below is the alternative Below is the alternative
vectorizedvectorized solution. Clean and solution. Clean and
simple! Advantages:simple! Advantages:

–– Higher level language, easier to Higher level language, easier to
understandunderstand

–– Executes faster with large Executes faster with large
matricesmatrices

// add_demo1.sce

clc;
add = 0;
i = 0;
while (i < 100)

i = i + 1;
if (modulo(i, 2) == 0) then

continue;
end
add = add + i;

end
disp(add)

 2500.

// add_demo2.sce

clc;
add = sum(1:2:100);
disp(add)

 2500.

There was a bug in Scilab 5.3.1 and
it returned an “Invalid index” error
message for the latter script

Speeding up Scilab (3/4): Speeding up Scilab (3/4):

execution time execution time tic()..toctic()..toc()()
�� Execution time can be Execution time can be

measured with the measured with the tic()tic() and and
toctoc()() pair of functionspair of functions

�� The top script computes The top script computes
values for sin(x) and orders the values for sin(x) and orders the
result in a table with two result in a table with two
columns (shown to the far right columns (shown to the far right
for only four points). The for only four points). The
execution time 17.389 s is for execution time 17.389 s is for
the shown script, with Scilab the shown script, with Scilab
looping over 30,000 timeslooping over 30,000 times

�� The lower (The lower (vectorizedvectorized) script) script
performs the same task. The performs the same task. The
execution time is 9 execution time is 9 msecmsec, about , about
2000 times faster than with the 2000 times faster than with the
for...endfor...end loop!loop!

// measure_time1.sce

clear,clc;
x=[]; // Initate vector
y=[]; // Ditto
tic(); // Start stopwatch
for t=0:0.0002:2*%pi

x=[x; t];
y=[y; sin(t)];

end
time=toc(); // Stop watch
disp(time) // Display time

 0. 0.
 2. 0.9092974
 4. - 0.7568025
 6. - 0.2794155

 0.014

 17.389

// measure_time2.sce

clear,clc;
tic();
t = (0:0.0002:2*%pi)';
[t,sin(t)]
disp(toc())

 0.009

Speeding up Scilab (4/4): Speeding up Scilab (4/4):

two more ideastwo more ideas

tic();
for i = 1:100000

x(i) = 1;
end
disp(toc())

77.481

tic();
x = ones(100000,1);
disp(toc())

0.005

Replace loop by ones (): Replace nested loops with
length (find ()):

tic();
k = 0;
for i = 1:1000000

x = rand(1,1);
if x < 0.2 then

k = k + 1;
end

end
disp(['k =' string(k)])
disp(['time =' string(toc())])

!k = 200660 !

!time = 10.142 !

tic();
k = length(find(rand(1000000,1) < 0.2));
disp(['k =' string(k)])
disp(['time =' string(toc())])

!k = 199649 !

!time = 0.298 !

In this case the execution time is
reduced by a factor of 34. Not
nearly as much as in the earlier
cases, but still a significant
improvement (typical in practice)

Discrepancy in time Discrepancy in time

measurements (1/2)measurements (1/2)

 -->tic();

 -->s = 0;

 -->for n = 1:100000
 -->s = s + n;
 -->end

 -->time = toc();

 -->disp(time)

 97.531

// scilab-matlab_loop.sce

clc;
tic();
s = 0;
for n = 1:100000

s = s + n;
end
time = toc();
disp(time)

 0.453

I wanted to check Scilab’s computation time for a cased given in a
textbook on Matlab by Hahn & Valentine. First I did it on the Console
and then on the Editor, but the results did not match:

The result is 97.531
seconds on the
Console. Clearly not
true because the
answer came up
without delay

It is only 0.453 s
when done on the
Editor. That’s more
like it

Let’s try with vectorized
functions (next slide)

Discrepancy in time Discrepancy in time

measurements (2/2)measurements (2/2)

And here is the same in vectorized form:

Now the Console tells
of a threefold
improvement in
computation time,
but still not true…

and the Editor
agrees about the
improvement, but
the discrepancy
remains

Conclusion: There is a bug either in my approach or in Scilab; but
Scilab seems to execute faster than Matlab on the old Pentium II
processor that Hahn & Valentine used

// scilab-matlab_vectorized.sce

clc;
tic();
n = 1:100000;
s = sum(n);
time = toc();
disp(time)

 0.016

 -->tic();

 -->n = 1:100000;

 -->s = sum(n);

 -->time = toc();

 -->disp(time)

 32.994

ATOMS (1/6): installing ATOMS (1/6): installing

new toolboxesnew toolboxes
�� Recall the Recall the problems with ATOMSproblems with ATOMS that I mention in that I mention in Chapter 1Chapter 1
�� ATOMS (ATOMS (AutomaTicAutomaTic mOdulemOdule Management for Scilab) Management for Scilab) allows the user allows the user

to download and install external toolboxes (modules)to download and install external toolboxes (modules)
�� There is reason to take a look at which modules might be of use,There is reason to take a look at which modules might be of use,

since specialized tools can limit the time needed to solve a prosince specialized tools can limit the time needed to solve a problemblem
�� Start by hooking up the computer on the Internet and clicking onStart by hooking up the computer on the Internet and clicking on the the

ATOMS icon on the Console. If you are unlucky you will see the ATOMS icon on the Console. If you are unlucky you will see the
following message on the Console (I was unlucky and others have following message on the Console (I was unlucky and others have
been as well): been as well):

�� The bug (Scilab The bug (Scilab bugbug #8942) remains unsolved and its true influence #8942) remains unsolved and its true influence
is unknown to me. The Scilab team gives the unhelpful suggestionis unknown to me. The Scilab team gives the unhelpful suggestion to to
download the mentioned filedownload the mentioned file

atomsDownload: The following file hasn't been downloaded:
- URL : 'http://atoms.scilab.org/5.3/TOOLBOXES/32/windows.gz‘
- Local location : 'C:\Users\Johnny\AppData\Local\Temp\SCI_TMP_2772_\.atoms\1_TOOLBOXES.gz‘

ATOMS (2/6): whatATOMS (2/6): what’’s s

availableavailable

This is the ATOMS
main window. Texts
overlap a bit, but
basically it is a list
of contents

Go ahead and try to
find something of
interest, even if
there isn’t much for
us engineers

Another problem is
that there is little
information about
what the modules
really can do for us

ATOMS (3/6): installATOMS (3/6): install

I decided to try
Stéphanie
Mottelett’s
”Plotting library”
(this version
gives problems
with a Vista PC!)

Click on Install

An installation
message opens
at the bottom,
and after a good
while Scilab tells
that the module
has been
installed

ATOMS (4/6): new infoATOMS (4/6): new info

I also installed the GUI Builder
by TAN Chin Luh

When Scilab is restarted it
informs about the installed
toolboxes

Question: What is needed to
make use of the installed
modules?

Check with the Help Browser
and yes, at the very end of the
list of contents are new
additions: “Matlab-like plotting
library” and “A Graphic User
Interface Builder”

ATOMS (5/6): Check with ATOMS (5/6): Check with

MatlabMatlab’’ss quiver3()quiver3()

I tested Matlab’s quiver3() function
with the script in Help, but
something is wrong. The plot is
wrong and Scilab yells about hold
on, which it should know by now

// matlab_quiver3.sce

// Test Matlab's quiver3() function /

clear,clc,clf;

[X,Y]=meshgrid(-2:0.2:2,-1:0.2:1);
Z=cos(X.*Y);
surf(X,Y,Z);
hold on

[U,V,W] = surfnorm(X,Y,Z);
quiver3(X,Y,Z,U,V,W,'r');
Legend 'Surface normals'
colormap gray

hold off

hold on
 !--error 4
 Undefined variable: hold

 at line 10 of exec file called by :
 es\matlab_quiver3.sce', -1

ATOMS (6/6): discussion ATOMS (6/6): discussion

of problemsof problems
�� My troubles began in earnest with the execution of My troubles began in earnest with the execution of MatlabMatlab’’ss

quiver3()quiver3() function. No matter what I did, all function. No matter what I did, all ScilabScilab scripts turned out scripts turned out
garbage plotsgarbage plots

�� The situation was confused by simultaneous events: Apart from The situation was confused by simultaneous events: Apart from
toolboxes I had also installed toolboxes I had also installed ScilabScilab 5.3.2, had some Windows 5.3.2, had some Windows
updates arriving, and saw hiccups with both MS Word and Windows.updates arriving, and saw hiccups with both MS Word and Windows.
There was no problem with There was no problem with ScilabScilab 5.1.15.1.1

�� Windows had been running for three years so I decided to reinstaWindows had been running for three years so I decided to reinstall ll
it. Only after this process I suspected ATOMSit. Only after this process I suspected ATOMS

�� To cut the story short, the problems were due to the To cut the story short, the problems were due to the PlotlibPlotlib toolbox. toolbox.
I uninstalled it and I uninstalled it and ScilabScilab 5.3.2 worked normally again5.3.2 worked normally again

�� Lessons learnedLessons learned: Install only one toolbox at a time and test it and : Install only one toolbox at a time and test it and
ScilabScilab immediately. Uninstall the toolbox in case problems emergeimmediately. Uninstall the toolbox in case problems emerge

�

Building a script libraryBuilding a script library

�� Over time we accumulate a huge number of programs. How should Over time we accumulate a huge number of programs. How should
we administer them, how can we later find what we need?we administer them, how can we later find what we need?

�� This presentation demonstrates alternative ways of This presentation demonstrates alternative ways of commenting commenting
scriptsscripts——a most important subject when a program has to be a most important subject when a program has to be
modified in the futuremodified in the future

�� Pay attention to program names. Descriptive names help to identiPay attention to program names. Descriptive names help to identify fy
individual programs among other programs in a large file individual programs among other programs in a large file

�� Build your library of Scilab scripts in a logical manner. In thiBuild your library of Scilab scripts in a logical manner. In this work I s work I
have partly saved scripts on a thumb stick drive, in the file have partly saved scripts on a thumb stick drive, in the file
H:H:\\Dr.EWDr.EW\\WritingsWritings\\Scilab examplesScilab examples\\, under the assumption that this , under the assumption that this
presentation points to where to find a particular script. This ipresentation points to where to find a particular script. This is not a s not a
the way to do it continuously, so give your own the way to do it continuously, so give your own documentation documentation
systemsystem a thoughta thought——including the backup solution!including the backup solution!

�� One option is to maintain a One option is to maintain a spreadsheet cataloguespreadsheet catalogue of programs with of programs with
information on what a specific script does, where it is located,information on what a specific script does, where it is located, which which
functions it contains, etc. An advanced solution is documentatiofunctions it contains, etc. An advanced solution is documentation n
software of the type used in requirements managementsoftware of the type used in requirements management

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

19. Examples, Set 619. Examples, Set 6

Additional examples, mostly Additional examples, mostly
related to Chapters 15related to Chapters 15--1919

Return to Contents

Example 6Example 6--1: user 1: user

defined GUI, introductiondefined GUI, introduction

�� This example is a modification of This example is a modification of
the similar in the similar in AntonelliAntonelli, , ChiaveriniChiaverini: :
IntroduzioneIntroduzione a Scilab 5.3a Scilab 5.3, pp. 74, pp. 74--
8080

�� The task is to create a GUI in the The task is to create a GUI in the
Graphics Window (GW). The GUI Graphics Window (GW). The GUI
consists ofconsists of
–– A sine plotA sine plot
–– A slider for changing the angular A slider for changing the angular

frequency of the plotfrequency of the plot
–– Two Two ““radiobuttonsradiobuttons”” by which the by which the

properties of the plotted graph can properties of the plotted graph can
be changedbe changed

–– An exit button that closes the GUIAn exit button that closes the GUI

�� The process is shown as a flow The process is shown as a flow
diagram to the right diagram to the right

START

END

Create initial GUI

Any changes?

Implement
changes

EXIT pressed?

Close GUI

No

Yes

No

Yes

// GUI_italian.sce

// Generates on the Graphics Window (GW) a GUI that contains a /
// sine plot (plot2d), a slider by which to adjust the angular /
// frequency of the sine function, two radiobuttons that change /
// the style and color of the sine graph, and a pushbutton that /
// closes the GW /

clear,clc;

// **** SUBROUTINES **** //

// Declaration of initial plot in GUI:
//------------------------------ ---------------
function initial_GUI()

t = linspace(0,7,200);
w = 5; // Initial angular frequency
plot2d(t,sin(w.*t),.. // Initial plot w=5 rad/s

rect = [0,-1.1,7,1.1]);
a = gca();
a.axes_bounds = [0.2,0,.8,1]; // Frame dimensions & location
xtitle("GUI DEMO WITH sin (wt)",...

"Time [s]","Amplitude");
a.font_size = 3; // Axes mark size
a.x_label.font_size = 3; // x_label size
a.y_label.font_size = 3; // y_label size
a.title.font_size = 3; // Title size

endfunction

Ex 6Ex 6--1: user defined GUI, 1: user defined GUI,

script (1/6)script (1/6)

The first subroutine,
initial_GUI(), creates
the initial sine plot
within the Graphics
Window; including
title and axes labels

The initial angular
frequency ω is defined
as 5 Hz

There is really nothing
special here

Go to the MAIN
program below if you
want to proceed in a
logical order

// Functions for changes wrt user actions:
//---
function update_slider() // IF slider movement

new_GUI_data(); // GOTO new_GUI_data()
endfunction

function update_radio() // IF radiobutton click
new_GUI_data(); // GOTO new_GUI_data()

endfunction

// Redefine plot in GUI:
//------------------------------
function new_GUI_data()
t = linspace(0,7,200)
drawlater(); // Delay changes

a = gca();
if (a.children~=[]) then // IF frame contains graph...

delete(a.children); // then delete graph
end
w = h_slider.value/10; // Slider range: 10 steps
plot2d(t,sin(w.*t));
if (h_radio1.value == 0) then // Check status of style button

a.children.children.polyline_style=1; // Basic style: line
else
a.children.children.polyline_style=3; // IF clicked: bars

end
if h_radio2.value==0 then // Check status of color button

a.children.children.foreground=1; // Basic color: black
else
a.children.children.foreground=2; // IF clicked: blue

end
drawnow();
endfunction

Ex 6Ex 6--1: 1: ……

script/script/……
The next two
subroutines respond to
user commands (slider
and radiobuttons
respectively), and point
to the fourt subroutine,
new_GUI_data()

An existing plot is
erased

The slider goes from
end to end in 10 steps

The if-then-else-end
constructs register the
status of whichever
radiobutton has been
clicked

Ex 6Ex 6--1: user defined GUI, 1: user defined GUI,

script/script/…… // **** MAIN **** //

xdel();
funcprot(0);

// Define window size & position:
//--
screen_size = get(0,"screensize_px"); // Find computer screen size
size_x = .7*screen_size(3); // .7*screensize_px 3rd element
size_y = .7*screen_size(4); // .7*screensize_px 4th element
h_graph = scf(0); // Open Graphics Window
h_graph.figure_size = [size_x size_y]; // Define GW size
h_graph.figure_position =... // Position GW in the...

[size_x/5 size_y/6]; // middle of the screen

// Open GUI with inital plot:
//-------------------------------------
initial_GUI();

// Add EXIT button:
//-------------------------
h_stop = uicontrol (h_graph,...

"style","pushbutton",... // Declare pushbutton
"string","EXIT",... // Pushbutton label
"fontsize",14,...
"backgroundColor",[1 0 0],... // Red button RGB
"foregroundColor",[1 1 1],... // White label RGB
"position",[85 size_y-210 50 50],...
"callback","xdel(0)"); // CLOSE GW if button pushed

The Main program
first deletes an
existing GW

The size and location
of the new GW is
defined as a function
of the total screen
size

Here we pick up the
initial plot that comes
in the GW (GUI)

The next thing that
we add to the GUI is
the EXIT button. Note
how many arguments
the uicontrol()
function has

Ex 6Ex 6--1: user defined GUI, 1: user defined GUI,

script (4/6)script (4/6)

// Add slider & label:
//--------------------------
h_slider= uicontrol(h_graph,...

"style","slider",... // Declare slider
"Min",0,... // Slider start value
"Max",100,... // Slider end value
"value",50,... // Initial slider value
"position",[10 size_y-270 180 20],... // Slider size & location
"callback","update_slider();... // GOTO to update_slider()
foo = strcat([‘ ' w = ‘ ' string(h_slider.value/10)...

‘ ' rad/s ‘ ']);h_text_slider.string = foo");
slidelbl = strcat(["w = 5 rad/s"]); // Define initial label
h_text_slider = uicontrol(h_graph,...

"style","text",... // Declare text
"horizontalalignment","center",... // Position in reserved field
"string",slidelbl,... // Add slider label
"fontsize",14,...
"backgroundColor",[1 1 1],... // White background
"position",[10 size_y-310 180 20]); // Field size & location

Here is the Here is the uicontroluicontrol()()
command that controls command that controls
the sliderthe slider

strcatstrcat()() is a function is a function
that we have not met that we have not met
before. Note that w and before. Note that w and
rad/srad/s are surrounded by are surrounded by
double asterisksdouble asterisks (' ' w ' (' ' w '
' and ' ' ' and ' ' rad/srad/s ' '), not ' '), not
by quotation marks by quotation marks
(strings within a string)(strings within a string)

This is the initial label This is the initial label
below the sliderbelow the slider

And the And the uicontroluicontrol()() that that
takes care of label takes care of label
changeschanges

Ex 6Ex 6--1: user defined GUI, 1: user defined GUI,

script (5/6)script (5/6)

// Add radiobutton for graph style:
//---
h_radio1 = uicontrol(h_graph,...

"style","radiobutton",... // Declare radiobutton
"Min",0,...
"Max",1,...
"value",0,... // Initial button value
"backgroundColor",[1 1 1],...
"position",[10 size_y-350 20 20],...
"callback","update_radio()"); // GOTO to update_radio()

h_text_radio1 = uicontrol(h_graph,...
"style","text",... // Declare button text
"horizontalalignment","left",...
"string","-Change graph style",...
"backgroundColor",[.8 .8 .8],... // Gray background
"fontsize",14,...
"position",[40 size_y-350 140 25]); // Field size & location

The first radiobutton
controls the style of
the plotted sine curve
(a solid line is the
default, turns to a bar
graph when the
radiobutton is clicked)

The commands are
quite similar to the
ones of the slider,
except that the foo
command is missing

Notice the “callback” statements. They are the beasts that make us jump
up to (GOTO) the subroutine in case (here to update_radio())

Ex 6Ex 6--1: user defined GUI, 1: user defined GUI,

script (6/6)script (6/6)

// Add radiobutton for graph color:
//--
h_radio2 = uicontrol(h_graph,...

"style","radiobutton",... // Declare radiobutton
"Min",0,...
"Max",1,...
"value",0,... // Initial button value
"backgroundColor",[1 1 1],...
"position",[10 size_y-380 20 20],...
"callback","update_radio()"); // GOTO to update_radio()

h_radio2_txt = uicontrol(h_graph,...
"style","text",... // Declare button text
"horizontalalignment","left",...
"string","-Change graph color",...
"backgroundColor",[.8 .8 .8],... // Gray background
"fontsize",14,...
"position",[40 size_y-380 140 25]); // Field size & location

// **** END MAIN **** //

The second
radiobutton controls
the color of the
plotted sine curve
(black is the default,
turns to blue when
radiobutton is clicked)

This is mostly a
repetition of the
commands for the
first radiobutton, but
the position in the GW
is different

Ex 6Ex 6--1: user defined GUI, 1: user defined GUI,

and here it isand here it is

w clicked
down to 2
rad/s

Both
radiobuttons
have been
clicked

Click on
EXIT and
the window
closes

Problem: Scilab experiences a lockup if you drag the slider. The plot
freezes and the Consol reports that the current handle no longer exists

Ex 6Ex 6--1: discussion1: discussion

�� I copyI copy--pasted the script from pasted the script from AntonelliAntonelli & & ChiaveriniChiaverini into Scilabinto Scilab’’s s
EditorEditor

�� The script had to be cleaned up and some redundancies could be The script had to be cleaned up and some redundancies could be
removedremoved

�� I added the second I added the second radiobuttonradiobutton and organized the script in what I and organized the script in what I
thought was a more logical fashionthought was a more logical fashion

�� When I executed the script it opened up as expected, but the sliWhen I executed the script it opened up as expected, but the slider der
was missingwas missing

�� After a frustrating weekend I did the whole thing from the beginAfter a frustrating weekend I did the whole thing from the beginning, ning,
but now in steps. The error was that I had moved the but now in steps. The error was that I had moved the ifif--thenthen--endend
construct in construct in function function new_GUI_datanew_GUI_data()() after the after the plot2d()plot2d() commandcommand

�� Lessons learnedLessons learned: Do the job stepwise and test as you progress: Do the job stepwise and test as you progress
�� As for the lockup, my guess is that Scilab runs into a conflict As for the lockup, my guess is that Scilab runs into a conflict

situation when it should update the handle and the previous updasituation when it should update the handle and the previous update te
still is in progressstill is in progress

Example 6Example 6--2: animation of a 2: animation of a

waltzing polygon (1/4)waltzing polygon (1/4)

�� This demo is based on This demo is based on
PinPinççonon’’ss ““EineEine
EinfEinfüührunghrung in Scilabin Scilab””

�� The original contained The original contained
errors, obsolete errors, obsolete
functions, and redundant functions, and redundant
commands. For instance, commands. For instance,
I transformed I transformed xsetxset()()
functions to handle functions to handle
graphics commands (as graphics commands (as
explained in Chapter 7)explained in Chapter 7)

// animation_pincon_m2.sce

//--/
// The script plots the track of a blue polygon (rectangle) /
// with red border, as it turns around its axis while racing /
// counterclockwise in a circular loop on a black background. /
// The rectangle can be chaged to a trapetzoid or other shape /
// by changing element values in the matrix polygon. Changing /
// theta arguments in the matrix align gives different effects /
//--/

clear,clc,clf;

// Basic parameters:
//----------------------
steps = 100; // Steps per circular loop
blength = 0.6; // Basic length of polygon
width = 0.3; // Basic width of polygon
radius = 0.6; // Radius of circular loop
revolutions = 1; // Number of loops to run

Ex 6Ex 6--2: animation of a 2: animation of a

waltzing polygon (2/4)waltzing polygon (2/4)

�� The matrix The matrix polygonpolygon
defines length & width defines length & width
of edges. Change them of edges. Change them
to different values and to different values and
the rectangle is the rectangle is
modified to a different modified to a different
polygonpolygon

�� Note the use of the Note the use of the
%%infinf constant to fill constant to fill
missing arguments in missing arguments in
plot2d()plot2d()

�� h=h=gcagca()() declares h as declares h as
a handlea handle

�� The handle is first used The handle is first used
to set the background to set the background
colorcolor

// Basic equations & definitions:
//------------------------------------
t = linspace(0,revolutions*2*%pi,steps)';
x_axis = radius*cos(t); // x-axis of circular loop
y_axis = radius*sin(t); // y-axis of circular loop
polygon = [-blength/2 blength/2 blength/2 -blength/2;...

-width/2 -width/2 width/2 width/2];
// Defines corners of polygon

// Set scale for isometric plot:
//---------------------------------
plot2d(%inf,%inf,frameflag=3, rect=[-1,-1,1,1], axesflag=0)
h = gca();
xtitle('Waltzing polygon')
h.background = 1; // Set background to black

Ex 6Ex 6--2: animation of a 2: animation of a

waltzing polygon (3/4)waltzing polygon (3/4)
�� The matrix The matrix alignalign turns turns

the polygon into a new the polygon into a new
angle. Change theta angle. Change theta
values to see some values to see some
interesting effectsinteresting effects

�� Here the handle is used Here the handle is used
to set the fill color of to set the fill color of
the polygon; the the polygon; the
process is executed by process is executed by
xfpolyxfpoly()()

�� Next the handle defines Next the handle defines
the border color; in this the border color; in this
case the executing case the executing
function is function is xpolyxpoly()()

// Plot rectangle as it waltzes its loop:
//---
turns = 3; // Number of turns per loop
for i=1:steps

theta = turns*t(i); // Angle of polygon alignment
align = [cos(theta) -sin(theta);...

sin(theta) cos(theta)]*polygon;
// Realigns polygon

h.foreground = 2; // Set fill color to red
xfpoly(align(1,:)+x_axis(i), align(2,:)+y_axis(i))

// Fills polygon with defined color
h.foreground = 5; // Change to blue for border
h.thickness = 3; // Set border thickness to 3
xpoly(align(1,:)+x_axis(i), align(2,:)+y_axis(i),'lines',1)

// Draws polygon border in defined color
end

Ex 6Ex 6--2: animation of a 2: animation of a

waltzing polygon (4/4)waltzing polygon (4/4)

In this screenshot the
polygon (rectangle) has made
just over three quarters of its
counterclockwise loop. At the
same time it has spun 2¼
times around its axis, and has
begun the last ¾ turn. There
are 100 position samples on a
full loop (steps = 100;) and
it completes in a few seconds

// grayplot_demo.sce /

// Gray area map with level curves using /
// grayplot()/Sgrayplot() & contour2d() to /
// create illusion of a 3D space /

clear,clc,clf();

// Color map definitions & initial declarations:
//---
f = gcf();
f.color_map = linspace(0,1,64)'*ones(1,3);
n = 20; // Plot resolution
x = linspace(-3,3,n); // 3D plot limits
y = x;

// Plot function:
//--------------------
Z = sin(x)'*cos(y); // Function to plot
Sgrayplot(x,y,Z) // Smoothed grayplot

// Define and add level curves:
//--
level = [-.8 -.6 -.4 -.2 -.03 .03 .2 .4 .6 .8];
contour2d(x,y,Z,level);

Example 6Example 6--3 (1/2) : 3 (1/2) :

grayplotgrayplot() & contour2d()() & contour2d()
�� This example shows how a gray This example shows how a gray

color scale and contour lines can color scale and contour lines can
be combined to create the be combined to create the
illusion of a 3D space illusion of a 3D space

�� linspacelinspace()() is multiplied by a 1x3 is multiplied by a 1x3
vector since the color map (the vector since the color map (the
““third dimensionthird dimension””) must be a) must be a
mx3 matrix. The color map can mx3 matrix. The color map can
be inverted with (be inverted with (11--linspace()linspace()))
and a nonlinear amplitude and a nonlinear amplitude
function can be added to stress function can be added to stress
the effects the effects

�� The The SgrayplotSgrayplot()() function function
smoothes the plot color smoothes the plot color
compared with the basic compared with the basic
grayplotgrayplot()() function function

�� Contour lines are addedContour lines are added

Ex 6Ex 6--3 (2/2): 3 (2/2): grayplotgrayplot() & () &

contour2d() contour2d()

sin(x)

co
s(

y)

The influence of the sine and
cosine functions are easy to see
(note that the origin is in the
center of the graph)

The contour lines become white
if the color map is inversed

Steps begin to show in the gray
scale if the color map definition
is changed to linspace(0,1,32),
where the argument 32 stands
for halved color resolution

Change the plot function from
Sgrayplot() to grayplot(), and
you’ll see the meaning of the
variable n=20

// create_sectors.sce

// Plots four colored sectors in predifined /
// directions and with predifined widths /

clear,clc,clf;

// ---- SUBROUTINE ---- /
// The plot2d() function defines the figure, /
// xfarcs() adds colored sectors to the plot /

function create_sectors(r, angle, width, col)
plot2d(%nan,%nan,-1,"031"," ",[-1,-1,1,1])
arcs=[-r;r;2*r;2*r;(angle-width/2)*64;width*64];
xfarcs(arcs,col) // Add sectors
xtitle('COLORED SECTORS')

endfunction

// ---- MAIN ---- /
// Define sectors:
//----------------------
rad = [.9,.6,1,.5] // Sector radii
angle = [0,135,225,270] // Sector midpoints
width = [45,75,60,80] // Sector widths
colors = [2,3,5,7] // Color definitions

// Call subroutine:
//-----------------------
create_sectors(rad,angle,width,colors)

// ---- END MAIN ---- /

Example 6Example 6--4: sector 4: sector

chart, scriptchart, script
�� This script is based on a solution This script is based on a solution

by Pierre by Pierre LandoLando and shows a and shows a
method for creating a sector method for creating a sector
chart, with each sector having chart, with each sector having
defined length (radius), direction, defined length (radius), direction,
width, and colorwidth, and color

�� The solution can be seen as a The solution can be seen as a
more general case of Scilabmore general case of Scilab’’s s
pie()pie() function that we met in function that we met in
Chapter 9 Chapter 9

�� The most important function in The most important function in
this case is this case is xfarcsxfarcs()(), which we , which we
already met in the first animation already met in the first animation
demo (the demo (the arcsarcs vector is of vector is of
course also important since it course also important since it
governs the whole plot)governs the whole plot)

Ex 6Ex 6--4: sector chart, plot4: sector chart, plot

�� Here is the plot, nice and Here is the plot, nice and
beautiful. We can beautiful. We can
suppress the axes by suppress the axes by
changing the changing the plot2d()plot2d()
argument argument ‘‘031031’’ to to ‘‘030030’’

�� The overlapping yellow The overlapping yellow
sector just happens to be sector just happens to be
on top (last element in the on top (last element in the
vector list). In practical vector list). In practical
applications, when doing applications, when doing
automatic plotting of automatic plotting of
some process, we would some process, we would
have to put more effort have to put more effort
into getting the plot the into getting the plot the
way we wantway we want

Example 6Example 6--5: Robot arm 5: Robot arm

(1/6), introduction(1/6), introduction

�� Recent web discussions on the Recent web discussions on the
relative virtues of relative virtues of ScilabScilab, , MatlabMatlab, and , and
Octave made me take a new look at Octave made me take a new look at
manual conversion of manual conversion of MatlabMatlab scriptsscripts

�� This case with a twoThis case with a two--dimensional dimensional
moving robot arm is from Chapman, moving robot arm is from Chapman,
S.J.: S.J.: MatlabMatlab Programming for Programming for
EngineersEngineers, 2nd ed., (publisher & , 2nd ed., (publisher &
year unknown), pp. 202year unknown), pp. 202--206206

�� The case demonstrates practical The case demonstrates practical
application of matrices. See application of matrices. See
Chapman for a full discussionChapman for a full discussion

�� The original script can be found on The original script can be found on
the next slides; the converted script the next slides; the converted script
with added comments are on the with added comments are on the
following two slidesfollowing two slides

Base motor

Elbow motor
Hand

x1

x2

L1

L2

Θ1

Θ2

Start

Finish

Ex 6Ex 6--5: Robot arm (2/6), 5: Robot arm (2/6),

MatlabMatlab scriptscript

% Robot arm motion script
%
% Initial values, angles in degrees
tf = 2;
theta10 = -19*pi/180;
theta1tf = 43*pi/180;
theta20 = 44*pi/180;
theta2tf = 151*pi/180;
%
% Equations for a coefficients
T = [tf^5 tf^4 tf^3

5*tf^4 4*tf^3 3*tf^2
20*tf^3 12*tf^2 6*tf];

c = [theta1tf-theta10; 0; 0];
disp(’Coefficients for theta1 motion:’)
a = T\c
%
% Equations for b coefficients
d = [theta2tf-theta20; 0; 0];
disp(’Coefficients for theta2 motion:’)

b= T\d
%
% Equations of motion
L1 = 4;
L2 = 3;
t = linspace(0,2,401);
tq = [t.^5; t.^4; t.^3];
theta1 = theta10 + a’*tq;
theta2 = theta20 + b’*tq;
x1 = L1*cos(theta1) + L2*cos(theta1 + theta2);
x2 = L1*sin(theta1) + L2*sin(theta1 + theta2);
%
% Plot path of hand
plot(x1,x2),...
xlabel(’x_1’),...
ylabel(’x_2’),...

title(’Path of robot hand’),...
text(4.3,0,’t=0s: (x_1,x_2) = (6.5,0)’),...
text(0.2,2,’t=2s: (x_1,x_2) = (0,2)’)

// robot_motion.sce

// Robot arm motion in two dimensions using a fifth-degree /
// polynomial to control the motion. See Chapman, S.J.: /
// "Matlab programming for Engineers," 2nd ed., for a /
// detailed discussion. /

clear;clc,clf;

// Initial values, angles in degrees:
//---
tf = 2; // Finish time
theta10 = -19*%pi/180; // Theta 1 start position
theta1tf = 43*%pi/180; // Theta 1 final position
theta20 = 44*%pi/180; // Theta 2 start position
theta2tf = 151*%pi/180; // Theta 2 final position

// Equations for a coefficients (velocity
// constraints have been taken into account):
//--
T = [tf^5 tf^4 tf^3

5*tf^4 4*tf^3 3*tf^2 // Angular velocity
20*tf^3 12*tf^2 6*tf]; // Angular acceleration

c = [theta1tf - theta10; 0; 0]; // Theta 1 movement
a = T\c // Coefficient vector a
disp(['Coefficients for theta1 motion:'])
disp([string(a')])

Ex 6Ex 6--5: Robot arm (3/6), 5: Robot arm (3/6),

ScilabScilab conversion (1/2)conversion (1/2)
The joint motors are
controlled by the following
polynomial expressions:

Θ1(t) = Θ1(0)+a1t5+a2t4+a3t3+
+a4t2+a5t

Θ2(t) = Θ2(0)+b1t
5+b2t

4+b3t
3+

+b4t
2+b5t

Matrix equations are set up
and solved for coefficient
vectors (a, b), using given
initial values Θ(0) and final
values Θ(tf), and the results
are used to plot the path of
the robot hand

// Equations for b coefficients:
//---------------------------------------
d = [theta2tf - theta20; 0; 0]; // Theta 2 movement
b= T\d // Coefficient vector b
disp(['Coefficients for theta2 motion:'])
disp([string(b')])

// Equations of motion:
//------------------------------
L1 = 4; // Length of upper arm [feet]
L2 = 3; // Length of lower arm [feet]
t = linspace(0, 2, 401); // Computation steps
tq = [t.^5; t.^4; t.^3];
theta1 = theta10 + a'*tq; // Base motor angular speed
theta2 = theta20 + b'*tq; // Elbow motor angular speed
x1 = L1*cos(theta1) + L2*cos(theta1 + theta2); // x1 position
x2 = L1*sin(theta1) + L2*sin(theta1 + theta2); // x2 position

// Plot path of hand, add labels & legend:
//--
plot(x1,x2),..

xlabel('x_1'),..
ylabel('x_2'),..
title('PATH OF A ROBOT HAND'),..
h1 = legend(['START: t=0s, (x_1,x_2) = (6.5,0); ..

STOP: t=2s, (x_1,x_2) = (0,2)'], 3)

Ex 6Ex 6--5: Robot arm (4/6), 5: Robot arm (4/6),

ScilabScilab conversion (2/2)conversion (2/2)

By requiring that velocity
and acceleration at t=0 be
zero, the polynomial
coefficients a5 and a4
become zero. This limits the
size of the T matrix
(previous slide) to 3x3

The computed coefficient
vectors a and b are used
to define angular
speeds, based upon
which the hand position
is defined in x1 and x2
coordinates

Ex 6Ex 6--5: Robot arm (5/6), 5: Robot arm (5/6),

plot & displayplot & display

 Coefficients for theta1 motion:

 !0.2028945 -1.0144726 1.3526302 !

 Coefficients for theta2 motion:

 !0.3501567 -1.7507834 2.3343779 !

Ex 6Ex 6--5: Robot arm (6/6), 5: Robot arm (6/6),

discussiondiscussion

�� MatlabMatlab’’ss %% comment marks had to be changed to comment marks had to be changed to ////
�� MatlabMatlab’’ss builtbuilt--in in pipi function had to be changed to function had to be changed to %pi%pi

�� Apostrophes (quotation marks) had to be rewritten, but only Apostrophes (quotation marks) had to be rewritten, but only
because copybecause copy--pasting gives the wrong type (pasting gives the wrong type (’’ instead of instead of ’’))

�� The The dispdisp()() command had to be changed because command had to be changed because ScilabScilab does not does not
output the a and b coefficients even if respective lines (a=Toutput the a and b coefficients even if respective lines (a=T\\d and d and
b=Tb=T\\d) end without a semicolon (a d) end without a semicolon (a bug?bug?))

�� MatlabMatlab’’ss text()text() command is not recognized by command is not recognized by ScilabScilab (cf. (cf. Chapter Chapter
99). It allows legend beginnings to be located at precise points). It allows legend beginnings to be located at precise points
–– The Help Browser does not give an answer on what to doThe Help Browser does not give an answer on what to do
–– The The ScilabScilab--forfor--MatlabMatlab--usersusers compendium by compendium by BeilBeil & Grimm& Grimm--StreleStrele

mentions this particular case but does not offer a solution mentions this particular case but does not offer a solution
–– ConclusionConclusion: We have to stick to : We have to stick to ScilabScilab’’ss ordinary legend commandsordinary legend commands

The manual conversion from Matlab scripts to Scilab was simple
enough. Only the following came up:

Example 6Example 6--6: animation 6: animation

with planet & moon, introwith planet & moon, intro

�� The task is to animate a planet with a moon rotating around it. The task is to animate a planet with a moon rotating around it. If If
possible, the bodies should have different colorspossible, the bodies should have different colors

�� The task has its first difficulty in finding a way to keep the pThe task has its first difficulty in finding a way to keep the planet lanet
static while the moon rotates. My solution is to redraw both bodstatic while the moon rotates. My solution is to redraw both bodies ies
for each step that the moon moves. Slow, but it worksfor each step that the moon moves. Slow, but it works

�� The second difficulty is to give the bodies different colors. ThThe second difficulty is to give the bodies different colors. The e
handle command handle command color_mapcolor_map isis nice, but it operates on the Figure nice, but it operates on the Figure
level and only one color is possible for graphs on the Axes levelevel and only one color is possible for graphs on the Axes level. l.
The presented solution is not perfect, since only the edges of tThe presented solution is not perfect, since only the edges of the he
facets that form the spheres have different colors (this can be facets that form the spheres have different colors (this can be
done on the Entity level)done on the Entity level)

�� The third problem is with box alignment. It will be discussed onThe third problem is with box alignment. It will be discussed on the the
plot slide plot slide

Ex 6Ex 6--6: planet & moon, 6: planet & moon,

script (1/3)script (1/3)

�� The spheres (planet, The spheres (planet,
moon) are built from moon) are built from
rectangular facets. The rectangular facets. The
values of the facets are values of the facets are
computed here, in computed here, in
subroutine subroutine facet()facet()

�� Basic variables for the Basic variables for the
planetplanet

// planet_moon1.sce

// Animation with a moon rotating around a planet. /
// The spheres are ccomposed of 3D X, Y, and Z /
// facets using the surf() function to plot. /

/ clear,clc,clf;

// **** SUBOUTINE **** //
// Attach defined points to the spheres:
function [x, y, z] = facet(v, h)

x = cos(v)'*cos(h); // Facet x-matrix
y = cos(v)'*sin(h); // Facet y-matrix
z = sin(v)'*ones(h); // Facet z-matrix

endfunction

// **** MAIN **** //
// Define planet & moon variables:
//---
// Planet (p), 10x10 degree grid:
vp = linspace(-%pi/2,%pi/2,18); // 18 steps vertically
hp = linspace(0,2*%pi,36); // 36 steps horizontally
rp = 2; // Planet radius

Ex 6Ex 6--6: planet & moon, 6: planet & moon,

script (2/3)script (2/3)

�� Basic variables for the Basic variables for the
moon, both for the moon, both for the
moon itself and its moon itself and its
location in spacelocation in space

�� GO TO subroutine GO TO subroutine
facet()facet() to compute to compute
facet matricesfacet matrices

�� Basic plot definitionsBasic plot definitions

// Moon (m), 20x20 degree grid & offset from origin:
vm = linspace(-%pi/2,%pi/2,9); // 9 steps vertically
hm = linspace(0,2*%pi,18); // 18 steps horizontally
rm = 0.3; // Moon radius
Rm = 2.1; // Moon offset
Az = 0; // Moon start point
n = 1; // # of moon revolutions
step = 100 // # of steps/revolution

// Define facets for spheres using subroutine facet():
//--
[Xp,Yp,Zp] = facet(vp,hp); // Planet
[Xm,Ym,Zm] = facet(vm,hm); // Moon

// Plot commands (box, planet, moon):
//---
// Define 3D box, put double buffer on, define surface:
a = gca();

a.data_bounds = [-5,-5,-3; 5,5,3]; // 3D box size
f = gcf();

f.pixmap = "on"; // Double buffer
f.color_map = hotcolormap(32); // Surface color

// Plot planet & rotating moon:
for Az = 0 : 2*%pi/step : n*2*%pi

// Delete previous entities (planet & moon):
if (a.children~=[]) then // IF frame contains graph...

delete(a.children); // then delete graph
end

// Plot planet & define facet edges:
a.background = color('grey'); // Box wall color
surf(rp*Xp, rp*Yp, rp*Zp); // Plot planet

e1 = gce();
e1.foreground = color('red'); // Facet edge color

// Plot moon & define facet edges:
x_loc = Rm*sin(Az); // Location on x axis
y_loc = Rm*cos(Az); // Location on y axis
C = Rm*[x_loc, -y_loc, 0] // Moon center
surf(C(1)+rm*Xm, C(2)+rm*Ym, C(3)+rm*Zm); // Plot moon

e2 = gce();
e2.foreground = color('blue'); // Facet edge color

show_pixmap();
end
f.pixmap = "off";

// **** END MAIN **** //

Ex 6Ex 6--6: planet & moon, 6: planet & moon,

script (3/3)script (3/3)

�� Loop for rotation Loop for rotation
beginsbegins

�� Delete old graphsDelete old graphs

�� Put color on the boxPut color on the box

�� Push planet data to Push planet data to
first bufferfirst buffer

�� Recalculate moon Recalculate moon
location & push data location & push data
to first bufferto first buffer

�� show_pixmapshow_pixmap()() = =
push plot to screenpush plot to screen

Ex 6Ex 6--6: animation with 6: animation with

planet & moon, plotplanet & moon, plot

And here the beauty is. The
moon rotates
counterclockwise and is
shown in its start position

As said above, this task was
not without problems. One
thing that I failed to do was
to tilt the box somewhat
differently. The handle
command a = gca();
a.rotation_angles =
[alpha,theta] just refused to
cooperate and the angles
stayed at 51° and -125°
respectively (a final bug?)

Measured with tick(); ... tock(),
each moon step takes about 150
milliseconds to perform

Dr.EW
Johnny Heikell

Dr.EW
Johnny Heikell

20. Adieu20. Adieu

Final words to accompany you in Final words to accompany you in
your struggle for survival of the your struggle for survival of the
fittestfittest

Return to Contents

ThatThat’’s it, Folks!s it, Folks!

�� We have reached the end of our journey. The road was longer and We have reached the end of our journey. The road was longer and
bumpier than I anticipatedbumpier than I anticipated

�� There is much more to Scilab but we are on our way if we master There is much more to Scilab but we are on our way if we master
even this material (think of an office software package and howeven this material (think of an office software package and how
little of its potential you really know even if you use it dailylittle of its potential you really know even if you use it daily))

�� The most important next step is to do Scilab simulations on our The most important next step is to do Scilab simulations on our own, own,
to solve problems in our particular sphere of interest to solve problems in our particular sphere of interest

Learning = hard brainwork + a tough rear endLearning = hard brainwork + a tough rear end

�� And for everybodyAnd for everybody’’s sake, keep reminding the Scilab team about the s sake, keep reminding the Scilab team about the
need for a comprehensive, upneed for a comprehensive, up--toto--date tutorial. To repeat an old date tutorial. To repeat an old
engineering adage: engineering adage: The job isnThe job isn’’t done until the paperwork is done!t done until the paperwork is done!

�� All the best and take careAll the best and take care

JHJH

“When I think over what I have said, I envy dumb people.”
Seneca (4 B.C.—A.D. 65).

